A UK Registered Educational Charity

Kevin Jones' Steam Index

Proceedings Institution of Mechanical Engineers: 1920-1929
Back to key file

Volume 99 (1920)

Robson, P.W.
Road transport by steam-vehicles. 639-61. Disc.: 661-72. + Plates 5 and 6 (6 illus.). 9 diagrs.
Sir Henry Fowler (662-3) said that, having been the first observer of a steam-driven lorry which went out on official trial in this country, at which trials he had the pleasure of meeting a prominent Member of the Council, he could not help looking back and seeing the great developments which had taken place in these vehicles since that time. He had been particularly interested in what the Author had said with regard to electric vehicles, because he represented a firm which had, he believed, the largest fleet of this type of motors in the country, which they found extremely useful for town deliveries. He was sorry the figures which he could put forward, and which had been published quite recently in Motor Transport, could not be compared with those the Author had given, because the latter had evidently been chosen from typical heavy working under good conditions of loading; these conditions were one of the great essentials for getting the best service not only out of steam-vehicles but any type of motor, and one which railway companies had very gwat difficulty in finding. In view of the constant changes in the rates paid for labour at the present time it would add materially to the usefulness of the Paper if the Author would state, in reference to the figures given on page 642, the date to which these figures applied, as this would be of use for future reference.
With regard to the life of vehicles, his firm purchased two motor vans in 1903 which had only just been disposed of, although for a very considerable time they ran for twenty hours out of the twenty-four. They had a few steam-vehicles, one of which had already had a life of sixteen or seventeen years. A tractor built at Lincoln had a life of about ten years and was still working satisfactorily. One point which had not been touched upon, but which was of vital interest from a warehousing standpoint, was the fire risk with steam-vehicles. That subject had received much greater consideration of late years than in earlier times, but it was a factor which militated against the use of steam-vehicles under certain conditions. He was sorry that from a purely railway standpoint he could not discuss the question which the Author had touched upon in the early part of his Paper in the time at present at his disposal. It must be remembered, however, that motor-vehicles at present ran on a permanent way–the roads–which was practically speaking free. He lived on the side of a main road between two cities about 60 miles apart, and he knew the difficulty he experienced in using a push-bicycle over that road at the present time, and more so with a fairly light car on four wheels. Undoubtedly this question of roads was a subject which must be handled before the motor-vehicle could be satisfactorily dealt with on the lines suggested by the Author, as many of the roads were at present in a disgraceful state. Until a central authority was established, the roads would not be put into a condition in which they could be used for steam or petrol traction to the greatest advantage, and the question naturally arose as to who was to pay for this. He did not wish to discuss the question of the new taxation of vehicles, but he thought it would hardly meet the state of things which the Author laid down as likely to occur in the future.

Perry, T.B.
The uniflow steam-engine. 731-43. Disc.: 743-64 + Plate 8. 5 illus., 13 diagrs.
The Uniflow Engine was invented in the United Kingdom by T.J. Todd in 1885. The Patent specification claimed that the object of the invention was to produce a double-acting steam-engine to work more efficiently, produce and maintain within itself an improved graduation of temperature extending from each of its two hot inlets to its common central cold outlet, and thus cause less condensation of the entering steam, and work with greater economy than had hitherto been the case.
the invention remained undeveloped until 1908 when Stumpf, of Charlottenburg University, took it in hand and devised a valve-gear specially suited to the idosyncrasies of the engine. Manufacture was commenced by the Ersten Brunner Maschinenfabrik, of Brunn, and their example was soon followed by other continental, and by several British, firms. Before WW1 several hundred engines had been built.
Advanatges claimed included economy in fuel consumption, flexibility in power output, speed control, maintenance and floor space. The text mentioned the North Eastern Railway's "goods" engines so-fitted, but most of the comment concerned stationary engines. Discussion: Thomas Clarkson (752-3) noted that he had constructed an unsuccessful steam car with a  uniflow engine. Daniel Adamson (753) noted that a uniflow engine had been working on a steam wagon for twelve months at that time.

Sankey, H. Riall
Address by the President. 1039-74.
Account of contribution of mechanical engineering to war effort during WW1, mainly on the Western Front, including interaction with the French and Belgian railways and the construction of narrow gauge railways to serve the front line. Statistics of locomotives and rolling stock.

Volume 101 (1921)

Nelson, Robert
Waste-heat utilization. 643-4. Disc.: 644-7.
Mainly concerned with heat recycling in the iron and steel industry and in electricity generation.
F. Trevithick (644) gave his experience in connexion with the atiliaation of waste heat in locomotives in Egypt. By the adoption of superheaters he reduced coal consumption by 20 to 25%, As regards utilizing the smoke-stack gases and the exhaust steam he had tried various arrangements for heating the feed-water, and had also tried the effect of heating the air before it went into the furnace. He found that, whether he used the gases for heating the steam, or whether he used them for heating the water, the economy was about the same. One of the difficulties which he experienced was that, using steel tubes in the exhaust steam heater, after about 60,000 miles they got very much corroded. There was no doubt that by using brass or copper he would have got better results.
D. Earle Marsh (644) said considerable economy was effected by getting the water into the boiler just below boiling-point. That and superheating had quite revolutionized locomotive practice. Another means by which a certain economy could be effected was by heating the air before it entered the furnace. That was, however, a very difficult thing to do in a locomotive.

Fowler, Henry
Superheating. 649. Disc.: 650-2.
Highly abridged. Early development of superheating had been hindered by problems with lubrication, which had been solved by developments in mineral oils. Pure mineral oils were not satisfactory – the best results were obtained with blended oils, consisting mainly of mineral oil with small quantities of fatty oil. One problem not fully overcome on locomotives was deposits which accumulate in the cylinders and ports, which have to be removed periodically.
The amount of superheat which can be given to the steam has gradually increased owing to lubrication improvements. Ten years earlier 150°F was quite normal for steam used in turbines, but in locomotives it frequently rose to over 300°F for short periods. Now, although the latter figure was rarely exceeded for any length of time in locomotives, it is worked up to in turbine practice. Roughly, within certain limits, the practical saving in steam with turbines is a little above 1% for every 10°F of superheat. With locomotives the saving varies between 15% and 25%, depending largely on circumstances.
In order to do away to a large extent with the fluctuation of firing up, etc., it is often advisable to cover the tubes of the superheater of stationary boilers with some substance which will store the heat somewhat, so that the degree of superheat may be fairly constant. The chief change in locomotive practice is the abandonment of every type of damper without any detrimental effect. The cast-iron header had been in use for ten years with perfectly satisfactory results.
Discussion: D.A. Low stated there was agreement that superheating was a very great advantage. Further the saving was greater the lower the pressure; and that the theoretical saving was less than the actual saving. He explained that the actual saving over the theoretical was due to the greater heat content of water over that of an equal volume of steam. This caused a greater heat transfer to the cylinder walls and a greater loss of heat through leakage when wet steam was used instead of superheated steam which had no water suspended in it.

Ormandy, W.R.
Liquid, powdered and colloidal fuels. 653-5. Disc.: 655-7.
Williinm Reginald Ormendy was born in 1872 and received his technical education at Manchester University. He subsequently became one of the leading fuel technologists of the Automobile Industry. He died 12 September, 1941.
Sir Henry Fowler (655) stated that the use of oil, not only for locomotives, but for every other purpose, was a financial one. Dr. Ormandy had spoken about the specific gravity of oil, but at Derby works they always spoke of the efflux time, which was about 400 at 60° F.  He was no optimist with regard to oil burning for locomotives when they got coal down to a lower price. It must be remembered that at sea they could dispense with a certain number of firemen, but on the footplate they could not do away with the second man. He would say that the equalizing price for oil was at about 1.75 times that of coal. Powdered coal, as Dr. Ormandy had said, was not at all a new thing. He had seen it at work in the East End of London some years ago, but the difficulty there was with the fire-brick. Lignite was used extensively on the Roumanian railways in conjunction with oil, but not mixed with the oil. It was employed as ordinary fuel. Loughnan St L Pendred () stated that in America more extensive use was made of powdered coal than in this country. Four railways were using it. In this country he thought Mr. Robinson was the only engineer who had tried it on locomotives. In 1918 the cost of pulverizing in America was 1s. 0½d. a ton. Probably that was a net charge, and capital cost of plant was not included. A difficulty in its use was that it had to be prepared locally. Sub-stations at which the coal was powdered for the use of the locomotives had to be provided. Another serious trouble, for which legislation had to be made, was that powdered coal was an extremely dangerous explosive, and could not be stored in large quantities. The Americans tried to burn powdered anthracite, but found that it was impossible to keep it alight. The difficulty was, however, satisfactorily overcome by using a mixture of 40% bituminous coal, and 60% anthracite, and grinding the whole lot together. In power stations powdered coal was being used in America fairly extensively, and it was claimed that the boilers at the Lakeside station attained with it over 90% thermal efficiency.

W.E. Dalby
The indicator as an aid to economy. 681-2. Disc.: 681-4.
The indicator diagram gives valuable information about the timing of the cycle of operations and about valve-setting, and this is as important as the determination of horse-power. In quick running internal-combustion engines a mere fraction of a second difference in timing makes a large difference in the power developed, and the quickest and best way of obtaining the proper setting of an engine is by means of an indicator. For indicating engines in which pressure changes are rapid, the moving parts of the instrument must be reduced to the smallest possible mass in order to avoid inertia error, and even then the movements must be small. With such liniihtions, diagrams of convenient size could most easily be obtained optically. Optical indicators may be divided into two types:
(1) the piston type, and
(2) the disk or diaphragm type.
The piston type was developed by the Hopkinson, and subsequently by Burstall. The disk type was represented in the Carpentier instrument and in the indicator designed by the Author, also in the indicator designed by the Watson

Volume 102 (1922)

Fowler, Henry
The electrification of English main line railways: Joint Meeting of the Midland Branch of the Institution of Mechanical Engineers, the Birmingham and District Association of the Institution of Civil Engineers, and of the South Midland Centre of the Institution of Electrical Engineers, in the Council Chamber of the Birmingham Corporation on Friday 20 January 1922.. 317-30.
A discussion meeting chaired by Sir Henry Fowler. Individual contributions were made by: Gresley (317-19) who was strongly in favour of the electrification of suburban railways, and railways where it was necessary to spend a large amount of money in doubling lines. In those cases he thought it was very likely that the electrification could show a great advantage. For long lines of railways, with traffic which was not dense, it appeared to him that unless the cost of electric supply could be reduced very much below the present figure, there was not likely to be sufficient financial return for the money which would be involved in carrying out the scheme.
William Willox (former Chief Engineer, Metropolitan Railway, 319-20): since 1913 the price of coal, the cost of materials, and the wage rates had risen greatly, and passenger and freight prices had risen causing railways were to lose traffic. Competition from road traction had arisen, and was as serious as competition from electric tramways and motor omnibuses. Gradually suburban railways were electrified at a considerable cost (mostly owing to each railway having to provide its own power station), and were successful. Electrification had taken place on a number of railways. The Metropolitan Railway in 1913 carried nearly 122 million passengers, and 182 millions in 1919. The Lancashire and Yorkshire trebled its traffic. Sir W. Forbes of the London Brighton and South Coast Railway, stated that his electrified lines broaght 150% more traffic and 200% more money, and showed on the capital expended a return of over 15%. and wanted to electrify the main line to the coast towns. The East London Railway–in the electrifying of which he himself had a hand–was largely in tunnel and passed under the Thames in Brunel's tunnel. This line was electrified without interfering with the traffic. Up to 1913 it was worked by steam, and carried 5,506,664 passengers; after this the number of passengers steadily increased, and in 1920 the number was 16,307,382, an increase of 184%. The London and South Western Railway electrification increased their passenger traffic by 100%. In 1915 the North Eastern Railway equipped their Shildon-Newport line, which with sidings was 50 miles long, with overhead electrical track equipment. This line dealt with heavy mineral traffic drawn by powerful electric locomotives, five of which did the work of thirteen steam locomotives. In America there were a number of cases where main line working had been and was being turned to electric working, with most favourable results, especially where there were heavy gradients and tunnels. In South Africa the railway from Glencoe Junction to Pietermaritzburg, 171 miles, was to be electrified.
Owing to the continuous increase of traffic into terminal stations the question of accommodation arose. This might be solved by costly extension of the terminus or by electrification. The Metropolitan Railway hauled its main line steam trains from 7 or 9 miles out by electric locomotives and the same thing would have to precede main line electrification in many cases. The cost of the electrification on such railways as the Metropolitan, including power-house and everything, was somewhere about .£20,000 a mile pre-war cost. The cost of electrifying the East London Railway, which received current from Lots Road, was about £5,400 per mile pre-WW1. The power-houses were intended to be built near the coal fields where coal should be plentiful and cheap. There was no engineering difficulty in electrifying existing steam railways, even when the traffic was dense, with either the contact-rail system or the overhead-track equipment. No cases were known on the Metropolitan Railway where men had been killed or injured if ordinary care were taken. The cost of ordinary maintenance of a rail-contact line was found to be £12.64 per mile per annum. There were over 600 trains a day in and out of the main line part of Baker Street Station. The old station was pulled down and every line in the station was altered in position. A new station and new offices were built on columns over the lines and platform, and no serious accident happened to any man and no train was delayed. On the West London line, electrification was carried out while the traffic was carried on regularly, and, with the added 2s. per week per man " juice )) money, maintenance amounted to £13.1 per mile per annum. As to increase of staff only one gang of five men was added, and this was in the densest 9 miles of line. With power supplied for electrification, signalling could be electric or electro-pneumatic, and track-circuiting could be readily installed throughout, thus adding additional safeguards, and the sections might be lengthened or shortened in order to accommodate more trains.
Concluding, Sir Henry welcomed the pertinent points raised by Dr. Kapp. There were many points with regard to the criticism of steam and electric locomotives which might be dealt with if there was time, but the consideration they wanted to lay hold upon was whether it was going to pay to electrify our main lines. There was no insuperable electrical or mechanical difficulty in the electrification of main lines, but there was a difficulty in regard to the financial side of the problem when they were dealing with a low density of traffic. He would again quote his friend, Mr. A.W. Gibbs, who said the difficulties were more mechanical than electrical. The electrical side of the problem seemed to be perfectly sound. There were certain mechanical difficulties. One of them, unfortunately, had not been touched upon, that was the question of low centre of gravity and wheel arrangement.

Fowler, Henry
Metallurgy in relation to mechanical engineering. 331-5.
Delivered 27 February 1922. Chaired by H.S. Hele-Shaw. Not confined to railway metallurgy, but also made reference to automotive and aramamemnts industries. In case of railways he cited improvement in tyre life with introduction of steel. Tyres had a Brinell hardness of 128 prior to Bessemer steel when it rose to 300. This enabled an increase in mileage of 58%. A small amount of arsenic in the copper for locomotive fireboxes extended life.

Dewhurst, P.C.
British and American locomotive design and practice: some comparative comments thereon from practical experience. 375-423.Discussion: 424-511. 11 diagrams
Based on experience on Jamaican Government Railways considered that bar frames were more suitable for North American and colonial railways, but plate frames were more suitable for British conditions and tank engines where the frames aided the fitting of tanks. Also considered that American locomotives lacked the long life of British products.
E. Kitson Clark (424l), in the course of introducing the Paper, said that he thought that all who dealt with locomotives were so keenly interested that they generally had bias one way or the other, but he presented this Paper as being the unbiased opinions of an extremely practical and honest-minded man. He thought the great question of natural flexibility or rigidity of the plate-frames or bar-frames had never been thoroughly investigated. The plate-frame as made in England and as at present stayed, was a box girder of a very rigid type. He considered that the bar-frames in the American design might be taken to represent two separate units which were not so boxed together, and that each bar-frame was stiff enough in itself to give a certain primary lateral rigidity. The bar-frame and the plate-frame certainly were rigid or the reverse, accordingly as they were traced by diagonals, or merely tied by cross-stays. He ventured to put this view forward as a little contribution on this debated subject.
In his reference to tank-engines, the Author touched on an important question of policy, and a reply on this point would be of great; interest. With regard to shoes and wedges, one very strong point made by the Author was that the shoe in the horn was fastened against the side of the horn opening in the bar-frame and did not depend on bolts and nuts and rivets in the same way as in the ordinary horn block in an English frame. He thought that was a matter well worth comment in the discussion. Those who built their engines with a forging which was fastened on to the side of two tongues which hung down below the horn blocks, knew the great difficulty of getting it fitted quite tightly in the first instance, and of preserving it from being made easy in the treatment in the sheds ; the result was that reliance was placed on the shear of the bolts. He noticed the Author’s praise of the distance-piece which held the bottom of the horn together in a definite and practical manner. With regard to the compensation of the springs, he did qot think it was possible to go into that question that evening, because it was complicated and had very much to do with the different kinds of work required from the different engines, the number of axles and the relative arrangement of the boiler, fire-box, bogie, and driving axles.
Engineers were always told about the great difference between basic steel and acid steel, but he had never done any flanging with basic steel boiler plates because consulting engineers had never really allowed basic steel since he was interested in making locomotives ; but if there was any experience on the subject of the treatment of basic steel in flanging and the heats at which the plates suffered from scaling, and at which they could be set finally when they were flanged, it would be a very valuable piece of evidence to add to the Paper. With reference to the fire-box, it appeared to hiin that even locomotive engineers were influenced by fashion. When the Belpaire box was introduced, there was not room above the fire-box for the steam to get away from the water, and where there were crown-stays on the top of the fire-box these often became coated with deposit and a positive danger to the life of the fire-box and the boiler. If through stays were adopted, they went diagonally through the shell-plate, and the remedy was to get a flat top to the casing so that a stay would go normally through both plates. By that means a large space was obtained for steani and everything was satisfactory, only he thought designers were continuing the motion without occasional reference to the original reasons. It appeared to him that it was time to reconsider the proper methods of having a round top fire-box, because he felt certain they were far cheaper to make, which was a very important thing, and it was to be observed that the Americans retained them.
With regard to the fusible plugs, his experience was that enough tinning was not done. On the subject of regulators, he thought the opening of the regulator was easier in America than in England. He had the honour of being in the first trip of an " Atlantic City " engine going to Atlantic City, and the ease with which the man sat comfortably and pulled the regulator open with his left hand was something he had never forgotten. With reference to safety-valves, the Author had not said what clearance there was between the wings of the valve and the valve-seat.

Sir Henry Fowler (426-), said it was a matter of some difficulty to discuss a Paper of this kind, but he felt that the presentation of it was of very great advantage, more particularly to the junior members of the Institution interested in locomotive work. The Paper gave in a concise form what he thought Lieut.-Colonel Kitson Clark would agree with him would take a lifetime under ordinary conditions to get together. He was placed in somewhat of a difficulty because he had not quite appreciated whether the Author had proposed to bring forward the difficulties which he had experienced with locomotives built in accordance with English and American practice, or whether he proposed to discuss the differences in locomotive practice in these two countries. He raised two points which were always in the minds of locomotive engineers when dealing with design in thiscountry-the loading gauge and the weight on the bridges. Those things did not press to anything like the same extent in America that they did here. As far as the bridges were concerned, the Author said it was quite an easy matter to deal with the question of bridges if the money saved in using larger and heavier locomotives was capitalized. He himself had travelled lengths of 200 or 300 miles on various lines in America, going over perhaps a dozen bridges across streams but practically never a bridge over a public road. Engineers in this country were constantly meeting the difliculty of bridges over roads. With reference to the use of ten-wheel engines, the Midland Railway, of which he was the Chief Mechanical Engineer, was the only one that had a ten-wheel coupled engine running on a main line, and in a distance of two and a half miles that railway ran over road bridges-not large bridges-and the locomotive had to be designed to suit those particular bridges. It was a point to consider that in this country the number of bridges were intense and immense. With regard to wagons, the question of increasing their size was always in the minds of railway engineers in this country. The remedy largely lay with the owners of wharves and coal screens, etc. Taking the capital value of making the necessary alterations, it would be found to be an immense sum. The first President of the Institution, George Stephenson, was such an artistic man that he put a little crown or ragged piece of tin work on the top of the “Rocket,” probably, but for this the head-room would now be even less. It was only possible to touch very lightly on the details of the Paper, and practically speaking an evening might be devoted to almost every one of the points mentioned, and several evenings on those not mentioned. The question of outside cylinders was an important one, and the Author showed that they were practically universal in American locomotives. In the majority of Colonial countries there were no platforms. One of the things with which the railway engineer had to contend in outside cylinders was coming within the gauge. Every engineer would like to have a larger boiler, and he advocated very strongly that the best way to burn coal was to burn it fairly slowly, not intensely, not with a blast that carried a very large proportion of the fuel through the tubes into the smokebox- if it went no further-and there again came up the question of weight. He held that there was no more efficient way of using steam in a locomotive than in using it in a compound and with superheat. The question of basic versus acid steel he felt was not a question of basic or acid, but a question of how the basic steel was made. If an engineer could be perfectly satisfied with the way in which it was made, there was no difficulty at all in using basic steel for any purpose, and the way in which it was made included of course the material. He would like to satisfy Colonel Kitson Clark with regard to the question of how basic steel could be flanged. On the railway with which he was connected, they had recently taken a plate shaped somewhat as shown in Fig. 12, the distance at A being 45 inches. It was not a thick plate but it was flanged into a splasher with quite a sharp corner, and the distance at B was 16 inches. He thought that should be conclusive proof that there was no difficulty in flanging basic steel. The thickness undoubtedly made a difference. They were able to flange the cross-stays and other parts made of basic steel up to 2 inch in thickness, with ease.
With regard to the use of copper and steel in fire-boxes and tubes, he had just had an opportunity of seeing about half a dozen steel boxes which were put in during the War, and he stated without hesitation that he did not wish to use steel fire-boxes on his railway. It might be that it was the condition in which the coal was burned or the coal itself, but the whole of the lower portion of the boxes would have to be scrapped much earlier than they would have been, had they been copper. With regard to the erosion which took place in copper tubes, he could say from an experience of between 2,000 and 3,000 locomotives that there was no difficulty at all, but when his Company and certain other companies used brass tubes there was considerable erosion just inside the tube-plate with certain coals. His Company had used during the War a large number of steel tubes, but replaced them as soon as ever an opportunity occurred, the reason being that the copper tubes gave infinitely less trouble. He had gone through month by month the casualties due to leaky tubes, and in spite of the fact that there were three times as many copper tubes in service as there were steel tubes, he thought the casualties were ten to one on the other way round. With reference to fusible plugs, the Americans had evidently considered the matter of sufficient importance to get the National Bureau of Standards to make an investigation into the subject. He knew it was not universally held amongst his colleagues in this country that a fusible plug was exactly the right thing. Such a plug must be properly made and looked after, and he thought even if a fusible plug had anything happen to it, at all events the attention of the firemen was called to the fact that there was something happening. Since the Midland Railway had adopted the principle of filling the plugs, and re-heating them in a muffle to just above the melting point of lead, the difficulties had disappeared. The Author also dealt with the somewhat complicated question of the superheater elements and the headers. On the Midland they used with advantage a copper ring of diamond section fitted into grooves both in the header and in the collar on the superheater element. He thought there was a great advantage in a loose flange over a fixed flange which rigidly connected the superheater elements as used in many cases. The shrinkage of tyres mentioned by the Author was employed by certain railway companies. The allowance given by the Author was 1/750, whereas his company employed 1/1100. That was very largely dependent on the finish obtained on the tyre and the centre. On a rough centre a greater shrinkage was required than with a smooth one. When his predecessor came back from America some years ago, he was very delighted with the system of lubrication in which a mixture of waste and horsehair was used. It was given an extended trial, but there was difficulty from the fact that the horse-hair tended to get into the oil channels and curl up into small balls.
With regard to oil consumption, in this country, with mechanical lubricators under the axle-boxes, it had been possible to reduce the consumption 66 per cent on what the Author mentioned. He was in the position of having to look after not only Belpaire boilers, and boilers with roof bars, but also round-top boilers with direct stays, and he was just dealing with the question of replacing direct-stayed boilers with boilers of the Belpaire type.

H.P.M. Beames (434) said there were many points in the Paper with which he was in complete agreement, and some where his own experience led hini not to see quite eye to eye with the Author, and there were other points on which he would like some more information. With regard to horns and pedestals, it would be noticed that the Author said that the removable shoe system allowed the lining-up and recentring of a whole set of wheels and axle-boxes, without taking the wheels from under an engine. That might be of great advantage in its way, hut he ventured to think that it could not be an unmixed blessing, because in the hands of inexperienced men it was quite conceivable that the centres of the wheels might be pulled to such an extent as to cause very considerable trouble, both with boxes and the bushes of the side-rods and with loose and broken crank-pins ; he believed it was not at all unusual. On the railway with which he had the honour to be connected, they had always adhered to the old-fashioned horn block. The late Mr. Webb carried out a number of tests in which he proved that the centres of the horns of an engine, after it had been in traffic for some time, were extended-in fact, he found that on a six-coupled engine the extension of the frame was as much as 1/10 inch.
With a view to standardizing both shed practice and workshop practice and to prevent the necessity of boring axle-boxes out of centre, and decreasing the life of the horns, Mr. Webb put on a suitable length to the centres of the side-rods, making the latter slightly longer than the original length on the drawing, with very excellent results. Many engines of that type were running to-day. With regard to axle-boxes, very satisfactory results had been obtained on the L. and N.W. Railway with axles without collars on the journals, and he could not himself conceive that a collar on a journal could be of any other use than to set up heat; whereas the big bearing surface on the boss of the wheel and the face of the box was a very excellent check on any side-play there might be.
So far as circulating tubes were concerned he asked the Author if he had had any experience of the Nicholson thermic siphon system, which he understood was now used on a considerable number of engines in the United States. He himself had tried one last year on a large passenger main line locomotive, but could not say that he had met with the success for which he hoped. Possibly the method of manufacture arid application was against it. With regard to blast-pipes, in 1916 his railway tried a blast-pipe which he believed was precisely similar to that which the Author dcscribed. There were four wings protruding into the bore of the pipe. It was found to be satisfactory for a time, but liable to carbon up, and unless very carefully cleaned, it had the reverse effect of what was desired.
On the question of safpty-valves, it would have been very interesting at the present moment if the Author had been able to give some American statistics as to the clearances allowed between the wings of the valves and the seating, and the angle of the seating, because those two factors had been very much discussed lately. He had recently carried out some tests to find what really was a suitable clearance. With a Webb-Ramsbottom type of safety-valve, with three wings, thoroughly warmed through, and with the outside temperature that of the shop in which the test was carried out, he found that a valve with 4/1000 inch clearance was liable to stick slightly. He was speaking of a diametrical clearance on a 3-inch valve. 3/1000 inch was just binding; 5/1000 inch was quite free. He went on and tried the test with the same valve surrounded by a bath of cold water, and found that at 6/1000 inch the valve was sticking. The 6/1000 inch clearance was when both the bush and the valve itself were cold. With 8/1000  inch clearance it was quite free. The same test was then carried out with water which had been cooled down by the addition of ice, and it was found that at 9½/1000 inch it was absolutely free. He then tried a test to see what would be the result of a blast of very cold air. An appliance was rigged up which gave a sort of half gale, at 32 miles an hour, measured by a Short and Mason anemometer ; it was blown through an ice box, so that the temperature was down to 8½° of frost, and it was found that with 8/1000 inch clearance the valve was quite free, so that the effect was less than with ice-cold water, which was really what might be expected. But a curious thing was noticed. In the bush which had been bored out to a standard it was found that, after all the tests had been carried out, the bush was smaller by 2/1000 inch, and that, he believed, was due to the very drastic treatment that the valve had received. It would be interesting if the Author could give some American statistics where very great differences in temperature had to be dealt with.
With reference to lubrication, on the L. and N.W. Railway they had tried grease and the Frankland type under grease lubrication for axle-boxes and the Menno grease lubricators for big ends and side-rods, but he had to admit that for the heavy fast traffic that had to be dealt with on the railway, he did not think there was anything that could beat good oil suitably applied and consistently fed. The feeding depended to some extent on the design of the oil-box. He had found that a worsted trimming would only siphon oil in proportion to the height of lift, that was to say, if the box was full the worsted trimming would siphon the first ½ inch at more drops per minute than in the second ½ inch and so on. Therefore he thought it necessary, in designing main line engines which had to do long runs without stops, to design a box so that at the finish of a run the oil would be the maximum required. Horse-hair and waste had been tried with not very great success, one of the reasons probably being that whrn the rnpinc had to be lifted out of the shops after packing the boxes, the weight of the axle came on the pad and pressed it down ,and then perhaps the engine was running without that type of lubrication at all.

W.P.F Fanghaenel  (445) the Paper was of special interest to him, because the Author and himself were co-apprentices at Kentish Town. Locomotives which were suitable for one country were quite unsuitable for another. One had to consider the fuel and water, the topography of the country, and even the labour which had to be used. With regard to the great difference in construction between the American locomotives and the British, he thought it was customary for the American locomotive to begin with the cylinders in erection, but in this country they always started with the main frames. That meant that the cylinders were a much more integral part of the American locomotive, and as cylinders fractured and wore out, it became more difficult to replace these than on English locomotives. His experience of the American locomotives was that their frames were also conducive to weakness, tlie same is tlie British. He found that the usual point of fracture was through AB, Fig. 14. Another point which the Author mentioned was the difficulty in the erecting shop when lifting a locomotive-that there was a liability to break it at CD. The plate-frames usually went at the corners. With regard to horn stays, he would like to know which was considered the best practice on the English locomotives. There was something to be said for all the types, and he did not know any one which was thoroughly perfect. The usual form of stay for plate-frames was mentioned on page 386. If the distance piece was not a good fit, the bolt would be tightened up very much and the frame put under stress. What actually happened in such a case was that the frame broke off at xy, Fig. 15. In the running shed, if the fitter wanted to get things up easily, he left the stay a loose fit, tightening up with the bolt and incidentally fixing the axle-box, or he rniglit put a stay in a little bigger and hammer it up, and then there would be a loose box and a stretched frame. Sir Henry Fowler had mentioned that he found steel tubes no good on his line. No doubt many would disagree with him, but from his experience he thought Sir Henry was quite right : they were not much good for copper boxes. The locomotives spoken of by the Author had boxes of very mild steel, and thp tube could be welded in. A copper ferrule was put between the tube and plate, and the beading then welded. There was no necessity to use the tube expander. The Americans simply fitted the tube in and welded it over at the end, and when they had to remove the tube they cut off the welded beading, and the undamaged tube was free to be pushed out. Another matter he thought the Author had omitted was the question of wash-out plugs, which was a matter of very great importance. Without these plugs in suitable positions, there was bound to be trouble with a boiler. Another point was that on the American locomotives they had the smoke-box door-plates two thirds the size of the British, and he would like to know how the lower tubes were got out.

George Bulkeley (GWR. 448-) said his excuse for taking part in the discussion was that he had obtained his locomotive experience on English and Canadian railways. The statement of the Author which had impressed him most was that “the best locomotive could only be evolved after a thorough weighing of all the facts, and by a combination of the best points of each practice; and those most successful in thus combining would lead in locomotive construction and working.” He submitted that that axiom was already justified by actual practice. Taking one British railway—the Great Western—a cursory inspection of their modern locomotives showed that the following features were common to both Great Western and American practice: (a) the boiler was of larger diameter at the throat sheet than at the smoke-box end; (b) the smoke-box was a circular extension of the boiler; (c) the arrangement, of the blast-pipe and smoke-stack was similar; (d) the cylinders were outside and their two castings formed the front anchorage for the boiler; (e) the springs were compensated in certain cases; (f ) the outside motion bar brackets were bolted to a deep vertical transverse plate extending right across the engine, and itself bolted to both boiler and frames (g) inside valve-gear being employed in combination with outside cylinders having piston valves above them, the valve spindles were actuated through the medium of rocker-shafts ; (h) semi-plug piston-valves were used ; (i) a two-wheeled pony-truck was used on medium-wheeled engines employed in fast passenger traffic ; (j) the cylinders were invariably set dead horizontally. This latter was an important point which was not always found in British practice, but by giving the piston a fore-and-aft movement parallel to the rails undoubtedly led to a smooth-running engine. He believed it was generally agreed that the Great Westem lnoomotiwa were very scientifically designed
One of the most marked differences in British and American practice had been in the design of valve-gears. Generally speaking and the Great Western was again an exception in this country designers of valve-gears here had not given the length of travel to the valves which was aimed at on the other side of the Atlantic. With the ordinary Walschaert valve-gear the limit of travel of a valve was about 7 inches with an ordinary link, owing to the angularity of the link and the danger of getting it more or less on a dead centre with larger valve travels unless much larger links were used, which latter was being done in America and Canada. He had read recently that Mr. H.O. Young, the eminent American locomotive valve-gear authority, was now recommending valve travels of no less than 9 inches, perferably to using larger diameters of piston-valves, in order to get a freer exhaust. Locomotive valve gear development in America and Canada had dated, generally speaking, from Dr. Goss’s instructive experiments with actual locomotives on the Purdue University locomotive testing plant at the beginning of this century, and it had been recognized that whilst it was very easy to get steam into a locomotive cylinder it was not anything like so easy to get it out freely, and what was aimed at generally in American valve-gear design was a full port opening to the exhaust when the port at the opposite end of the cylinder was about ¼ inch open to steam. Hence long valve travels, resulting in certainly very free running engines ; also the long steam-laps which the long travel allowed to be used, did definitely produce an increased cylinder horse-power very economically

H.P. Renwick (Great Indian Peninsula Railway 449-) said that the Author, in referring to the difference between American and English blast-pipe practice, said : ‘‘ It would be interesting to see this type of blast-pipe tried on express work in England. He was connected with the G.I.P.R., where a large number of experiments had been carried out with regard to the shortening of blast-pipes and the enlargement of the diameter of them. On a class of 4-6-0 locomotives used on express working, with cylinders 21 inches by 26 inches, the original design of blast-pipe allowed for a diameter of cap of 4: inches, with the cap 3 inches below the boiler centre line, and a petticoat 12 inches high, 20 inches diameter at the bottom, tapering to 14 inches diameter at the top, 13 inches above the boiler centre line. A wire cone spark-arrester, from the blast-pipe top to the bottom of the petticoat, was also provided and another sparkarrester, a flat wire mesh plate, covered the area of the smoke-box at the bottom of the petticoat. Various experiments were made reducing the height of the blast-pipe and increasing the diameter until it was found that the best results were obtained by a blast-pipe 1 foot 011/16 inch below the boiler centre line, with a diameter of the blast-pipe cap of 6¼ inches, with four 1-inch triangular lugs. A straight petticoat pipe 1 foot 5 inches in diameter, with its bottom edge 45/8 inches above the boiler centre line and connected to the base of the chimney, was provided and no spark-arresters were used. In addition to that, certain alterations were made to the valve gear, which provided a maximum cut-off of 60 per cent instead of the normal 85, and a minimum normal working cut-off of as little as 12.5 per cent, and yet in general working, whilst the blast was almost inaudible, it was found that as much steam could be obtained as was required. The coal was undoubtedly burned slowly. The coal consumption dropped, and he thought that by increasing the blastpipe diameter and by roughening the blast by the provision of triangular lugs, as was the normal American practice, considerable achantages were obtained. Similar results were obtained on all other classes of heavy engines, including 0-8-4 tanks used on banking service on inclines of one in thirty-seven. With regard to the use of rocking grates, the Author did not appear to lay sufficient stress on the great advantage that could be secured in their use in conjunction with coals of low calorific value, otherwise more or less unsuitable for burning on fixed grates on account of the frequent fire-cleaning necessary. In India, rocking grates were in general use and were universally preferred by the engine staff. Apart from the physical exertion required to punch clinker and ash through fixed bars with a hook or pricker, frequently as often as ten times on a run of 100 miles with a goods train, a considerable waste of time was incurred in waiting to get up steam on account of the severe disturbance of the fire caused by this method. With the rocking grate, the fire could be steadily lowered to any extent without disturbing the live coal on the top of the bed of fire, the up and down movement of the grate sections breaking up any clinker. No exertion on the part of the engine staff was required, as large grates could be operated by steam power through the medium of a small cylinder fixed to the drag-box casting. It was essential that ample ash-pan capacity should be given, otherwise the more frequent fire-cleaning filled up a shallow pan so quickly that grate sections or operating rods were liable to get burnt. No trouble should be experienced from warping or grates sticking up. Hopper bottom ash-pans were advisable.

James Clayton (S.E. C.R. 461) said the Author expressed the opinion (page 377) that English railways ought to make greater use of the eight-coupled and even the ten-coupled locomotive, and he inferred that the Author thought it was because of the axle weight limits. He would suggest from experience that it was not so much individual axle-weight limits as the distribution of a large weight over a very limited wheel-base, which sorely tried bridges of short spans of from 10 to 50 feet. He was sure such engines would be used as soon as ever the bridge engineer was able to help the locomotive engineer in that respect. The Author said that small use was made of the high-capacity low tare wagon, suggesting that it was the bridges that presumably accounted for it. He would again say that in this case it was not the bridges so much as the terminal facilities, and the wharf, dock, and warehouse accommodation which limited the use of these large vehicles in tbis country, in addition to the fact that the smaller vehicles had been found most suitable for the staple trade carried on most systems. Under the heading of "Outside Cylinders " (page 383), the Author, in referring to the nosing or boxing, gave many reasons why nosing or boxing took place, but did not mention what was the obvious reason, namely, that, the cylinders being outside, their effect in causing an engine to nose was very much greater than with inside cylinders, owing to the greater distance between the centres. He thought the Author was quite right in saying that the control by the bogie could influence it a great deal. On the South-Eastern and Chatham Railway in the latest engines, 2-6-0 tender and 2-6-4 tank, where a fairly long engine had been used with a two-wheeled truck in front, it had been found necessary to provide good lateral control, and that had been done very successfully by using the Cartazzi side control principle, the planes being inclined 1 in 6. In those engines, built in 1917, nothing whatever had had to be done to the bogie in the four and a half years beyond attention to bearings. In speaking of axle-boxes and journals, the Author pointed to a very good American practice of providing ample surfaces between the axle-box and the wheel-face. While that was a very good point indeed, it should be recognized as modern British practice, and he could point to the Midland Railway, the Great Western, the Great Northern, the Caledonian, and his own railway which were all providing it in their latest engines with very good results. On the same page the Author made out a good case for compensating, and it would seem that if compensating improved an engine riding over a rough road, it ought to reduce the wear and tear of an engine, which, like a British engine, ran over fairly good roads. He would like to ask what the effect at high speeds was of compensating an engine throughout which was previously not compensated.
With regard to the Belpaire fire-box, the Author thought they were only used by railways in this country which had been accustomed to the crown-bar. The South-Eastern and Chatham was an exception to that. The old boilers designed by Mr. James Stirling were all of the round top, direct-stayed type, without provision for expansion, and the engines were still running with that method of staying. His railway had now adopted the Belpaire box, believing that this type gave the best method of staying, providing as it did for staying two opposite flat surfaces, with the pressure between them, to each other. To stay a flat surface to a round surface was to upset the equilibrium of the latter. When a flat surface was stayed to a round top it was necessary to provide transverse stays to prevent the round top from being pulled down.
In connexion with fire-grates, the Author referred to the dropgrate, and said he would like to see it tried in British practice. It had been already tried many times. The Midland Railway had five engines so fitted for many years, and ran them as long as they could, until the enginemen begged they should be taken off because they were always getting stuck up. The Great Western Railway had used them also for a long time, but had now given them up. The Author had referred to the doubtful use of the pilot-valve for the regulator, and suggested that its use was due to the want of proper leverage. It was this difficulty of providing the amount of leverage required to open a large regulator-valve with modern boiler pressures from 200 to 225 lb., which made the pilot-valve necessary.
With regard to the comparison of the cross-movement and pull-out handle, the Author favoured the latter, but it had one obvious disadvantage ; it was a dangerous type unless used with a very good rack-control. In the old days, on the Glasgow and South Western Railway, a very serious accident occurred with a pull-out regulator. It was quite possible to arrange the cross movement handle to give the advantage for which the Author asked, that it should be placed in a convenient position to give a good look-out for the driver. Modern engines on the Great Western and those of many other railways in this country were fitted with that type of regulator.
The Author referred to the spherical cone-joint for superheater elements as being a good thing, and many engineers would be glad to know this, as this joint was coming into favour here. He objected to the asbestos and copper joint for the superheater elements, and with good reason. A very good type of joint was mentioned by Sir Henry Fowler, and he himself also thought that a simple joint of the section shown, Fig. 16, a double-veed type, could be made to answer exceedingly well. In his experience so far, it was the best copper joint tried, as it was simple to make and answered very well in practice.
With regard to dampers in smoke-box, the Author suggested that they were a necessity. Experience in this country showed that dampers were not a necessity, and on his railway they had not been used since 1914, and there had been no trouble whatever. It should, however, be stated that they used the automatic air-inlets which the Author said he had not tried, and no lubrication trouble was caused by their use. In connexion with smoke-boxes, the Author spoke of the diaphragm plate being a good feature. They had just recently had the same experience on the S.E. and C.R., where with the extended type large capacity smoke-boxes, this diaphragm plate was found beneficial, Fig. 17. It was found that this application of the diaphragm plate not only prevented spark throwing, but caused a very much more uniform draught over the fire-grate, and made the engine steam more freely. It was also used by Mr. Churchward for the latest engines on the Great Western Railway. The Author rather ridiculed the British type of large smoke-box door, but he (Mr. Clayton) thought it had many advantages. He did not agree with the Author that the tubcs could be cleaned easily from the fire-box end. First of all it would be necessary to wait until the boiler was cold, also in cleaning the tubes from the fire-box end the cinders in the large superheater flues were driven further in and jammed amongst the elements. With a steam tube cleaner from the smokebox end, it was possible to clean the tubes readily. Blastpipe orifices, with projecting lugs, were tried in 1909 on the Midland Railway, where they were known as “Nibs.” but their use was soon discontinued. He thought the plain low-position orifice, made to suit the diameter of chimney, was the best. The chimney must be large enough, so that it left an annulus of 1½ to 2 inches round the column of steam, and then generally the engine would give no difficulty in steaming.
With regard to injectors, the Author spoke of the British "Combination" pattern being quite unsuitable for Colonial use, and that also applied in this country with many feed-waters. It could not be used on the S.E. and C.R. where the water contained large quantities of carbonate of lime, which resulted in furring. On page 408 the Author showed some good types of joints, and suggested No. 10 (b) for the regulator stuffing-box, but there would be a great danger of jamming the regulator-rod in tightening the joint, Personally, he thought the British practice of the registered stuffing-box on a flat joint, metal to metal, was the best. He wished the Author could have given a comparison of the merits of the British and American locomotives as regards maintenance and up-keep because that was where the real economy should be sought. He had gone carefully through the Paper and counted up the number of points on which the Author agreed with the British and American practice respectively, and under thirty-two headings he found that in eighteen the Author favoured British practice, or in about 60 per cent of the cases, which showed that the British locomotive stood the comparison very well. In addition the British locomotives on the same work, and both before and after rebuilding, showed a very handsome coal saving, something like 10 lb. and upwards a mile. He thought British locomotive builders might take heart of grace and still believe that the British designed and built locomotive required a great deal of beating, given an equal chance with its competitors

Discussion at the North Western Branch Meeting in Manchester, on 23 March 1923. 462)
The Paper was presented, on behalf of the Author, by Sir Henry Fowler.
Discussion John G. Robinson (462) said the Author stated (page 401) that he favoured the American spherical joint for superheater units, as shown on page 409. Some years ago the Great Central Railway Co., like others, fitted up a number of locomotives with superheaters, the units being bolted to the header. Jointing rings of various types were tried, but in consequence of the high temperature of the smoke-box gases and superheated steam, the joints in question gave considerable trouble, necessitating the engines being from time to time stopped for remaking of joints and renewal of units damaged by corrosion at the front end, which corrosion was proved to be a direct consequence of leakage from the joint.s. A header was devised which eliminated all bolted joints, and the units were expanded directly into the header by means of simple appliances. This overcame all their difficulties, and judging from the number of such superheaters now in use all over the world, amounting to nearly 8,000, he could only conclude that other people had been equally fortunate in their experience. He could not speak from personal experience of the American spherical unit spoken of by the Author, as they had not fitted any on the Great Central Railway. During his visit to the United States in 1913 he discussed these joints with the leading engineers of the Baldwin Locomotive Co., and it was admitted that though the spherical joint was found to be a great improvement on the original system of using copper and asbestos or copper rings, nevertheless, it necessitated cost and attention on the part of the running maintenance staff at the round-houses in order to follow up the stretch of the bolts. Expanding the units into the header amounted to nothing more than expanding a boiler-tube into a tube-plate, which was common practice everywhere, the important difference being that a boilertube had to be expanded into two tube-plates and was therefore subject to expansion and contraction forces, whereas the superheater unit was free to expand and contract without restraint. On the Great Central Railway there were 405 engines so fitted, and so satisfactory was the expanded system that the cost of maintenance had been reduced to practically nothing, and only in cases where it was necessary to remove the units for boiler examination had they had to disturb them from shop to shop. Extraction of the units was quite as easy as expanding them in place, the process only reducing the thickness of the tube slightly. In point of fact, there were cases where units had been expanded and extracted as many as six times and were still in service. For example, the mileage per set of units in a 4-64 engine was found to have been 370,448 for a life of nine years and three months, from which it was evident that they must have been removed and replaced several times for retubing and examination. Almost identical figures were given by the 4-4-0 express passenger and the 4-6-2 passenger tank engines, and in the case of the 2-8-0) mineral engines a mileage of nearly 200,000 for nine years six months was realized. With regard to dampers, when the G.C.R. Co. began to fit superheaters on the loconiotives, they also supplied dampers worked automatically by the pressure in the steam-chest, and they were of the opinion that this was necessary to prevent damage tmo the unit ends when running without steam. In practice, it was found that the dampers interfered with the draught, and, therefore, with the steaming powers of tho engine, and obstructed the proper cleaning of the tubes. Steam-jet retarders were tried to replace the dampers, and though they effected their purpose when new, they were costly to maintain and were therefore abandoned. They were now working without dampers or retarders, which, he believed, was in accordance with general European and some American practice, and had provided a valve which formed a blower and circulating device whereby a small flow of steam was maintained through the units when the blower had been opened beyond a predetermined amount. This was done, not so much with the idea of protecting the fire-box ends of the units as to meet the point referred to by the Author (page 417), to assist in the lubrication of cylinders and valves when drifting. Any system of admitting steam to the steam-chests and cylinders, when the regulator was closed, entailed the provision of a device to prevent accumulation of pressure which would move the engine when it should be stationary. Automatic valves for this purpose were not reliable, and they employed a discharge valve of large capacity worked positively from the regulator-handle, the dischargevalve being fully open when the regulator was closed, and vice versa. With reference to the lubrication of steam-chests and cylinders, in American practice, this was usually effected by means of a hydrostatic displacement lubricator, whereas since the advent of superheated steam-locomotives in this country, the common practice was to use a mechanical pump-lubricator. To ensure that the right amount of oil was being supplied to each point, it was necessary to have a sight-feed for each pipe-line. The sight-feed arrangement must be located in the engine cab, and, to ensure that the rate of feed observed at the sight-glass should also be that maintained at the point of lubrication, could only be done by working the distribution pipes full of oil under a pressure superior to that in the steamchests and cylinders against a constant resistance. This was effected successfully on the Great Central Railway by the “ Intensifore ” sight-feed lubricator and retention-valves.

A.E. Kyffin (Beyer, Peacock and Co. 467-) thought the Paper was interesting as presenting in a compact form particulars of American practice as applied to locomotives built for lines of more recently developed lands, which were usually without the repair facilities of a great road and had a somewhat rough permanent way. In the speaker’s experience of the design of British locomotives for overseas railways, compensating spring gear was almost invariably fitted by first-class firms, and flangeless wheels were a common feature when required by the curves. American boilers, perhaps, had the advantage, as they were normally designed for burning coal which was inferior to British. On the other hand, it would be found that if fuel quality, etc., was known, the capacity of British designed boilers was ample. As examples of boilers designed for burning inferior fuel the following particulars might be of interest as actual figures :-

Grate Area (sq. feet)

Cylinder Diam (inches)

















The Author’s remarks would imply that the semi-circular brasses in axle-boxes were used in American practice only, but this was hardly the case, as axle-boxes of this type were extensively fitted to British-built locomotives. The same remarks held good of large wearing faces on the sides of axle-boxes next to the wheel-boxes.
Fireholes.-The Author’s remarks regarding the Webb type were of interest, but the experience of at least two very large railways the speaker was acquainted with was not so favourable. Both at one time had many boilers with this feature, but it had been dropped in later designs in favour of the forged ring between the inner and outer pIates, the ring being about 2% inches thick and the copper plate dished to suit. Regarding fire-grates, assuming that the condition of working and quality of fuel were known, the practice of British firms was very similar to that of the American, and the same remarks were good for ash-pans and smoke-boxes, for colonial and overseas service, rocking finger bars, drop-grates, and dumping ash-pans being frequently employed.

E. O’Brien (L. N.W.R 468.) said the Author appeared to be quite correct in laying stress on the extent to which locomotive design was based on opinion ; there was, considering the amount of experimental data available, an extraordinary lack of definiteness about locomotive design as compared with electric motors, for example. It was to be hoped that the discussion would elicit to what extent the problem of the use of the heavier locomotive of high tractive effort had been investigated in relation to the capital expenditure involved in bridge renewal. The L. and N.W. Railway Co. had a large number of powerful 0-8-0 engines, and undoubtedly could make use of 2-10-0 engines in considerable numbers. The Author seemed rather uncertain about the four-cylinder engine which was rather astonishing in view of the success attained by this type both in Great Britain and on the Continent, particularly as a four-cylinder design was essential in order to obtain the maximum tractive effort permissible within the British loading gauge. Three 21-inch cylinders were the maximum permissible with the three-cylinder design, whereas the four-cylinder permitted of four 20-inch cylinders and a boiler of sufficient capacity for these was just obtainable within the British loading gauge. The Author did not mention the all-bronze axle-box ; this type, though expensive in first cost, was actually the cheapest to maintain, The cast-steel axle-box was no more immune fromfracture than the bronze box. In regard to tail-rods, measurements of wear made by the speaker on a number of similar engines with and without tail-rods with cylinders 20½ inches diameter and under, proved conclusively their uselessness ; if a tail-rod was to be useful, a gland and slide-bars must be provided at the forward end of the cylinders. The Author had unfortunately not touched on those points of design, which, apart from the provision of ample grate area and wide bridges between tubes, had probably more influence on performance and economy than any others, namely : (1) the provision of large and straight steam and exhaust ports ; (2) the provision of ample bearing areas in the valve-motion pins; (3) the correct proportioning and placing of the blast-pipe in relation to the smokebox and chimney. If a locomotive were correctly designed in these respects, its performance would be more than satisfactory.

John W. Smith (GCR. 469), said that, with regard to the disparity of the comparative sizes of the American and British locomotive, latterly the size of the British locomotive had increased practically to the limits of the gauge. The demand in this country was for a quick and frequent service. This fact was often overlooked when making comparisons between British and American locomotive requirements. He had often wondered whether the American railway practice of accepting contractors’ general designs did not tend to their policy of frequent renewals rather than periodical heavy general repairs ; certainly it tended to an ever-changing design.
Ample boiler pressure was desirable from the point of view of work performance, but one must guard against the provision of boiler pressure too much in excess of the cylinder requirements, which was not satisfactory from the economical point of view.
With regard to the position of the cylinders, he (Mr. Smith) preferred inside cylinders for a two-cylinder express passenger engine, notwithstanding the objection to the crank-axle. There was no doubt that plate-frames gave greater room for the fire-boxes that went between the frames and were more elastic laterally than the bar-frame. The main advantage of the bar-frame was the one permitting an arrangement of spring compensating gears as illustrated on page 389, which gave easier riding on bad roads. A second feature was the effective system of horn arrangement.
He was inclined to believe that if the railway companies in America built their own engines and repaired their boilers to the same extent as was done in this country, they would have changed from steel to copper for the inside boxes, and with regard to tubes, in recent years many of the British companies had replaced copper tubes by steel. The G.C.R. had nearly every one of their engines fitted with steel tubes. Circulating tubes had only been tried in a few instances in this country, but so far as he knew there were none still in service. Touching on brick arches, at one time the Americans used no brick-arch in their fire-boxes, and it was rather amusing to find the American technical press advertising the advantages of a brick arch which had been standard practice ever since locomotives began to be used in this country. There was no doubt these arches were of great utility.
In America as well as on the Continent, in working a locomotive, the door was only kept open sufficiently long to enable coal to be put in, whereas a British driver would not consider his engine was steaming properly unless he could run with his fire-door partially open. The reason for this was no doubt the fact that British locomotives were fitted with brick arches, and, further, the upper half of the fire-hole was fitted with a deflector plate for throwing the air which entered the fire-hole, under the arch. The British arrangement of brick arch and deflector plate was, no doubt, the real cause for the difference in working practice. The usual British practice was to fit internal steam-pipes of copper. A number of locomotives of which the speaker had knowledge were fitted with steel main steam-pipes, but these gave so much trouble, by corrosion and pitting, that they were replaced by copper.
Although a few engines were fitted with piston-valves as far back as the old days of the Blythe and Tyne Railway, they did not find favour until they were reintroduced on the North Eastern Railway in the early " 'Eighties," [1880s] and later their use was extended to the Midland Railway. After the working of these pioneer engines, their use gradually became adopted in America, and with locomotives fitted with superheaters, a piston distributing-valve had practically become the standard valve

E.M. Gass (LYR 469) noted that the Author suggested (page 377) that a much greater use could be made in  the UK of powerful eight-coupled engines, or even ten-coupled. There were a number of the former running in this country, but none of the latter, with the exception of probably the Midland tender-engine employed on banking. The non-use appeared to lie in the fact that it was difficult to obtain sufficient adhesion, and at the same time keep the weight below the Engineer's standard curve for under-bridges, on the assumption of two of these engines being coupled together, each having a tender capable of carrying 4,500 gallons of water and six tons of coal. Taking an axle-load of sixtem tons, and a coupled wheel-base of 22 feet, which was about as short as it could be in order to get in the necessary brake-blocks, it was found that the equivalent uniformly distributed live load per foot-run was above the bridge curve, on spans of 30 to 80 feet. The largest diameter of outside cylinder that could be employed on a load gauge of 8 feet 8 inches wide wa9 19 inches. Assuming the engine to be equipped with four cylinders of this diameter, a piston stroke of 26 inches, a wheel diameter of 4 feet 6 iricltes, and a boiler pressure of 180 Ib., the tractive effort at 85 per cent of boiler pressure was 53,187 lb. To absorb this tractive effort the weight upon the rails, on the assumption that adhesion was 35 per cent, then the total weight required was approximately 95 tons, or 19 tons per axle, yet 16 tons per axle was not allowable on short span bridges.
Respecting boiler power, the limit to make steam depended mainly on grate surface, arid of course the quality of the fuel. The best proportion of grate to heating surface appeared to be about 1 to 60, and 1 square foot of plate surface supplying 300 cubic inches of cylinder volume (one cylinder in the case of a two-cylinder engine, and two cylinders for a four-cylinder type), the grate surface then became, for four 19-inch by 26-inch cylinders, approximately 50 square fret, and the heating surface 3,000. A grate of this capacity arranged between the frames was not practical, as it meant a fire-box length of about 15 feet, so the wide box arranged above the wheels had to be resorted to, and this in turn resulted in a shallow fire-box with restricted volume. and little depth between the grate and brick arch, for the coal bed. For burning bituminous and semi-bituminous coals containing a high percentage of volatile matter. ample fire-box volume was essential for complete combustion. The difficulties that presented themselves in designing high-capacity 10-coupled engines to conform with the British load gauge and standard curve for under-bridges were (1) axle-load liniits, (2) ample fire-box volume, and (3) restricted wheel-base to negotiate With reference to the Author’s remarks respecting the advantages of outside cylinders and the eniployment of the Walschaerts valve gear, the speaker added another point regarding its merits that it lent itself to the employment of long valve-travel. Regarding the better protection from radiation losses, the use of high superheat, which carried the steam dry to the point of exhaust, nullified any condensation that might arise with cylinders placed on the outside. The design of fusible plug that was used by the L. and Y.R. projected into the water 5/8 inch and was 17/8 inch long over-all. It had a straight tapped hole through its centre slightly countersunk at the top end. The surface of the hole was tinned previous to pouring in the commercially pure lead, the hole being filled with the exception of 3 inch from the fire-box end of the plug. This type gave satisfaction.
The Author appeared to prefer the double-beat regulator-valve curves. to the slidirig through-port type with pilot-valve. The speaker’s experience was that the latter was more reliable in keeping tight; in addition, the pilot-valve was an advantage in governing the small supply of steam to the cylinders necessary when coasting. The use of axle-box wedges was not universal. Several railway companies had either not employed them or had abandoned them. They might be of service providing that adjustment was properly carried out from time to time, but it was questionable whether this was always done at the running depots.

J. R. Billington (LYR 472) did not think that the Author had made the matter clear of plate-frames versus bar-frames, because it was not so much one of rival design, but was simply an adaptation to circumstances in the first place, and afterwards one of growth and development. With the large fireboxes that were required in America for the poor fuel and rapid growth of locomotives, the bar-frame was well adapted. In the British Isles the richer fuel practically necessitated copper-boxes which were, of course, smaller, and these the plate-frame was well adapted to receive.

Volume 103 (1922)

Sauvage, Edouard
Feed-water heaters for locomotives. 715-26. Disc.: 727-34. 9 diagrs.
With the exception of the exhaust steam injector, pumps were required as adjuncts to the heaters. Disregarding pumps set in motion by the mechanism of the engine direct acting steam-pumps, similar to the Westinghouse air-compressor, were used. The steam consumption of these pumps, in proportion to the work done, was large. They exhausted into the heater, but the heat from that source, coming out of the boiler, reduced the recuperation due to the main exhaust. Temperature measurements showed that out of eighty calories, twenty came from live steam and sixty were recuperated. An advantage of the pump was that it made regulation of a continuous feed, at whatever rate wanted, with ease.
Amongst earlier heaters, the Kirchweger had been largely used to warm water in the tender tank. The same plan had been used for a long time on the London, Brighton and South Coast Railway. Couche also cites the pumps of Clarke, of Bouch, and the Ehrhardt heater. The Chiazzari pump took water from the tender and delivered it to a heater, receiving also exhaust steam, and then returned the hot water to the boiler. It worked from the engine mechanism. The Mazza injector took water at a very high temperature, and worked in connexion with a Kirchweger heater. The Koerting double injector took water warmed up to 75° in a tubular heater. The Lencauchez system had, like the Chiazzari, a cold-water pump, a heater condensing steam in the water, and a hot-water pump delivering into the boiler. Exhaust steam passed first through an oil separator, working on the principle of changes of direction. The pumps were worked from the engine mechanism, but as at high speeds their action is inefficient, Lencauchez proposed to reduce the speed by gearing..
Principal appliances in actual use were the Davies and Metcalfe injector, Weir heater, Caille-Potonie Heater, Worthington heater and Knorr heater.

Raven, Vincent L.
Electric locomotives. 735-74. Disc.: 774-81. 19 figs.
The North Eastern Railway have a 4-4-4 symmetrical steam type (D class) which has run up to 70 miles per hour without finding any ill effects.

Volume 105 (1923)

Address by the President, Sir John Dewrance, K.B.E., on Friday, 19 October 1923. 845-63.
When the Institution did me the honour of nominating me as President, it was just sixty years since I inherited the ownership of the firm of engineers that bears my name. My father erected the " Rocket " for our first President, George Stephenson, assisted at its trials at Edgehill, and was afterwards locomotive superintendent of the Liverpool and Manchester Railway. The late Mr. Edward Woods was the engineer of the line, and he had a brother, Joseph, who started as an engineer in 1835. My father became associated with Joseph Woods, and at his death in 1842 changed the title of thc firm to his own name, which it has borne ever since. My father died in 1861 and left me his business
Patents.-Some of the large concerns of to-day were started to work patented inventions, but if we look back it is difficult to find very many of these inventions that became the standard productions of the industry when the monopoly expired. As time goes on and thousands of patents are filed in this country and all over the world, it 'becomes increasingly difficult to invent anything that has not been foreshadowed in some previous publication. During my experience patents have gradually become of less importance in mechanical engineering than they used to be. Like my predecessor, I am a patentee, having taken out 114 patents, the first one when I was nineteen, but I do not mind confessing that some have been for small details. Others have a definite purpose and have been laborious exercises in deduction, often over a long period. Our own files are searched to see what has been done before, and then the Patent Office records are consulted, Sketches are prepared of various methods and discussed with colleagues likely to criticize. Many ideas get no further and are filed for record; others are made and tried, altered, and improved perhaps several times, and the result is exactly what one feels ought to have been done without all the trouble taken. If the article finds a ready sale, an infringer may adopt the converse process by searching the Patept Office apd other records, and producing what is called a mosaic anticipation. One detail is shown in one patent, another in a second, and so on until it ia contended that with these before him anyone skilled in the art could produce the subject of the patent. It has always seemed to me to be unfair that documents should be evidence of anticipation : evidence should be of prior use, and the extent of that use should be sufficient to prevent fraudulent evidence being accepted. The object of a patent specification is that when the period of the patent monopoly has expired the industry may be informed by the specification exactly how to carry out the invention that has then become public property. If the industry carry out the invention as described by the specification of the patent, there is ample evidence of use, but in the large proportion of patents the public do not want to avail themselves of the privilege. The inventor used to be
Stnndardization. - In reviewjng thc past of mechanical engineering, it is evident that an enormous amount of energy and opportunity has been wasted in not having exercised more care in arriving at well-considered standards at the earliest possible time. Take railways, for instance. Had the British Engineering Standards Association been in existence, it might have prevented the great ‘‘ battle of the gauges.” The present gauge of 4 feet 8½ inches was arrived at in the crudest possible way. Brunel quite correctly contended that it was too narrow, but unfortunately he went to the other extreme and his broad gauge was too wide. No other railway followed the Great Western, and the inconvenience of not being able to handle traffic soon compelled that Company to lay a third rail as far as Bristol. I can well remember the Bristol and Exeter and the Cornish Railway when no stock other than the broad gauge had passed over its rails except in a trolley. For years narrow-gauge stock was built on broad-gauge wheels and axles until there came the eventful date when, in an incredibly short time the stock was cleared off the rails and the rails closed to the 4 feet 8½ inches, and the broad gauge was no more. But the different railways that adopted the same rail gauge did not standardize their loading limit, and we have to-day stock that will only run on certain parts of the railway system because the tunnels, bridges, etc., will not take them. It was probably for financial reasons originally that collieries and traders built their own wagons to their own ideas. The railway companies have now agreed upon a standard 12-ton wagon, but with the full knowledge that it will not enter many of the collieries and factories until they are altered
Sir John Aspinall (861) gave the Vote of Thanks. In this he mentioned the standardisation of the Irish railway gauge..

Bond, Roland C.
The Walschaert [sic] locomotive valve-gear. 1137-41. 2 diagrams.
Author awarded a prize of £3 for this Paper, which was read in Manchester on 14 December 1922, and in London on 19 March 1923. Straightforward description of Walchaerts valve gear and its application. Some comment on lubrication..

Volume 108 (1925)

Diamond, E.L.
Recent improvements in the efficiency of the steam-locomotive. 53-68. 6 diagrs.
Author awarded a prize of £5 for this paper, which was read in Manchester on 8 November 1923, and in London on 21 January 1924. The subject was considered under three headings: (1) Thermodynamic Efficiency; (2) Economic Efficiency, which cannot be expressed in a precise mathematical formula since it includes cost of maintenance, but is of ultimate importance, and (3) Traffic Efficiency, by which is meant the efficiency with which the steam locomotive fulfils the requirements that it is primarily designed to meet, namely, to haul certain loads at certain speeds, remembering that power costs are only one factor in the total cost of conveying merchandise and passengers. The first section was the longest, since all improvements common to each must be dealt with under it. .

General meeting [the welcoming of President Sir Vincent Raven] by William Henry Patchell.. 607-10.

Volume 109 (1925)

Gresley, Herbert N.
The three-cylinder high-pressure locomotive. 927-67. Disc.: 968-86. 9 illus., 15 diagrs., 6 tables.
This paper is of great significance as in it he attempts to outline his design philosophy in a way in which only the greatest engineers were prepared to do (Churchward, Maunsell, Stanier and Bulleid were others). Advantages of the three-cylinder locomotive were summarized as under:

  1. Less coal consumption than with the two-cylinder type of similar power.
  2. Increased mileage between general repairs.
  3. Less tyre wear than with the two-cylinder type.
  4. Lighter reciprocating parts can be used, consequently hammer-blow on the rails is reduced, and for equal bridge stresses a greater permissible weight can be allowed on the coupled wheels of the three-cylinder type.
  5. More uniform starting-effort than with either the twocylinder type or the four-cylinder with directly opposed cranks.
  6. Lower permissible factor of adhesion; thus, with a given weight on the coupled wheels, a higher tractive effort can be obtained without increasing the tendency to slip.
  7. Earlier cut-off in full gear.

With the present type of locomotive boiler, it is neither practicable nor economical to make any considerable increase in boiler-pressure; and owing to restrictions imposed by loading gauges the maximum allowable dimensions for outside cylinders have been reached ; they already exceed the maximum which can be accommodated between the frames. Any further increase in power can, therefore, only be obtained by increasing the number of cylinders from two to three or four.
A three-cylinder engine is a cheaper engine to build and maintain than one with four cylinders, and moreover possesses certain characteristics in which it is superior. It will meet the requirements of the near future for increased power which, owing to physical limitations, cannot be met by the two-cylinder arrangement.
Undoubtedly a four-cylinder engine can be designed, the power of ahich will exceed that of a three-cylindcr within the same gauge limits, but the construction of such an enginc at the present moment would be prematurc, in the same way as the construction of three-cylinder locomotives nrarl
During the discussion, opened by James Clayton Gresley had to withstand a sharp attack on (1) the Patent priority of the derived valve gear (Holcroft 1909), and (2) the inherent weakness of the derived gear (at least as developed by Holcroft). Clayton (968-70) gave details of the satisfactory performance of No. A822 in service, but stated his preference for three independent sets of valve gear. This may explain the change from conjugated gears, on the S.R. Clayton was critical of the irregularity of the derived motion. Nevertheless, Clayton did support Gresley on the advantages of three cyclinders,.. Support for derived systems came from H.P.M. Beames (976-7): " it was the experience of all locomotive engineers that the less they got inside the frames the better. It was difficult to get a man to spend more time inside the frames than was necessary.". McDermid (J. Instn Loco. Engrs, 1932, 22, 291 (Paper 291) quoted this paper and this led to further discussion on the draught in three-cylinder locomotives.

Raven (p. 978) noted that "there was a great similarity between the three-cylinder engines which he built and those which Mr. Gresley built to-day, with the exception of the valve-gear. So far as that was concerned, he always adhered to the Stephenson valve-gear, as he believed in simplicity. He used the three sets of valve-gear, and if he went back to railwork to-day, he would do the same again. The reason why he built three-cylinder engines was because they had on the North Eastern Railway a three-cylinder compound engine designed by Mr. Smith, who was the chief draughtsman to them in the days gone by, and it was on account of the even starting effort given by the 120° crank they were able to get with a three-cylinder engine, which led him to adopt it. One also realized that one was getting within the limit of gauges for high-power engines. The cylinders of the very large two-cylinder engines often struck the platforms, and therefore it was necessary to make some alteration. The particular advantages were the balancing of the engine, the starting effort, and the reduction of hammer effect on the permanent way. He was pleased indeed to be able to study the details of the advantages so admirably carried out by Mr. Gresley in his dynamometer-car tests. They bore out what his own experience had been, and he really thought the distinct advantages of the three-cylinder engine for locomotive purposes had been proved. The advantages of that engine could not be more clearly set forth than as given on page 946.
Mr. Clayton drew attention to the valve-gear. He did discover, after designing his arrangement, that Mr. Holcroft had devised a valve-gear for- three-cylinder engines, but it had not the same arrangement of levers. Mr. Holcroft had far more levers than he used. ' The other point Mr. Clayton referred to was very important, namely, the over-running of the valve-gear. He had had the same experience as they had had on the South Eastern and Chatham Railway, that was when running at high speeds excessive travel on the middle valve occurred when steam was shut off and the engine put into full gear, and the steam-chest covers were either broken or damaged. The trouble was overcome by allowing more clearance, and by using ball-bearings in all the working parts. The levers of the central valve-gear on the three-cylinder engines which he had built had all ball-bearings of the Hoffman type. He had built an engine with roller bearings fitted to all pins of the Walschaerts gear: After five years' work, with one exception, the rest of the bearings were the same as those originally put in; the wear was so slight. Of course, they were expensive, but they had been so successful that he was extending the experiment by fitting more engines up in the same way.
Another question raised by Clayton was also important: He said there were eight points where there were pins in the Author's particular valve-gear, and he said there were only eight points if they introduced an ordinary separate valve-gear for the middle cylinder. He (Mr. Gresley) quite agreed, but in his gear there were eight pin-joints, only requiring little attention for lubrication, the ball bearings having grease cups which ran f9r a long time without any attention. With a separate valve-gear for inside cylinders' having eight working points, one of these would be an eccentric on the axle,
In replying to Mr. Sisson (page 972) Gresley referred to the question of triple expansion. Of course, that could not be used successfully on a locomotive because they could not condense, and the whole success of that system was contingent upon having a condenser. Mr. Webb built a triple-expansion engine at Crewe, and they at Crewe in those days thought there was no engine like the three-cylinder compound, but when he built a triple-expansion and it did not work quite so well, and although it was hoped it would be better than the compounds, the hopes were not realized and it got the name of Ichabod, because the glory had departed from Israel. (Laughter.) Mr. Bowden (page 973) raised the question of a reduced boiler repair bill. He (Mr. Gresley) had not taken that as being one of the advantages, although obviously it followed as one. of the subsidiary advantages of the use of the three-cyli:p.der engine.
Advantage had not been taken of the increased weight permissible on bridges due to better balancing. The engineers of the country imposed certain limits to the weight taken on a single pair of wheels, and they had not cared to increase the weights if the engines were three-cylinder, because it had not been proved that the hammer-blow was less. The Bridge Research Committee had found that the three-cylinder engine gave very much less hammer-blow on the bridges than the two-cylinder engines, and when they came to issue their report he hoped they would bear that in mind in considering the question of allowing greater weights with properly balanced three-cylinder engines.
Communication from E.L. Ahrons pp. 981-2
mainly on balancing.

Vincent L. Raven
Address by the President. 1085-1105.
Presented on Friduy 23 October 1925.
"No doubt you will expect me in my Address to say something about the steam-locomotive, inasmuch as this year is the 100th anniversary of the opening of the first railway in the world, and George Stephenson, the Founder of our Institution, was the first railway engineer and played so important a part in the introduction of steam transport for public use [but].
I do not, however, propose to place before you an Address dealing with this subject, interesting as it may be." His main theme was to record the importance of mechanical engineering and this was illustrated by reference to electricity generation, especially from water-power (the huge Niagara hydro-electricity project received considerable attention), and to marine propulsion: he was highly critical of the Allied Conirnissioners for insisting on the breaking up of a M.A.N. set of double-acting two-cycle engines in an adranced state of construct'ion at the Armistice which were of about 16,000 h.p. in four cylinders. Following a visit to Australia he was trenchent in his criticism of the lack of a standard gauge for its railways.

Sir John A.F.. Aspinall
Some railway notes old and new. (The 12th Thomas Hawksley Lecture). 1107-51. 21 figs.
A very extensive historical ramble: Aspinall clearly stated at the beginning that he was going to turn over some earlier ideas which may have been "forgotten". It was written to celebrate the Stockton & Darlington Railway's Centenary, and includes observations on the development of railways both in Britain and in North America since the time of George Stephenson. plus some sharp assessments on competition from road transport.
Donald Currie raised strong objections to railways in 1837 because “veins of water will be cut, springs dried up, and sloping fields so deprived of water that they will become sterile and unfit for pasturage and agriculture. Whole estates are cut asunder and disfigured by deep cuttings.” Therefore, he proposed what he called a safety railway, by constructing it of "timber or other materials raised at least ten feet above the ground,” removing every obstruction to agricultural operations. As Sir John Aspinal said "Time and knowledge have, however, changed all that"
Wooden-framed Tenders. — As showing the desire to avoid possible injury to passengers: John Ramsbottom had told Aspinall that the reason why, on the London and North Western Railway, they made their tender frames of timber for so many years, was that, according to his view, the tender between the engine and the train should be the weakest part of the train, and that this should break up first in case of collision and thus save the passenger carriages. The idea seems to have been similar to that with regard to having a breaking spindle in a rolling mill.
Views of High Speed in 1862.— Looking backwards, some will recollect what was considered a wonderful run over sixty years ago at the time of what was known as the “Trent” affair, when Messrs. Slidell and Mason, two Confederate representatives, were taken from the British ship by the “ San Jacinto,” a Federal ship, and made prisoners. This led to an incident on 7th January 1862 in locomotive running which was thought much of at the time, when a special train was kept ready at Holyhead to carry the British representative to London. A run of 130½ miles from Holyhead to Stafford was made by Ramsbottom’s engine called “Watt,” in two hours and twenty-five minutes, the average speed being 54 miles per hour, and then the train was taken on 133½ miles to Euston by one of McConnell’s single-wheeled inside cylinder engines of what was known as the “Bloomer” Class, No. 372.
Modern High Speed Timing of Trains.— Nowadays, however, we have arrangements such as those on the London, Midland and Scottish for running high-speed trains between London and Birmingham. The time between Willesden and Birmingham is scheduled to be 109 minutes for a distance of 107½ miles, and it has been shown that on some occasions the journey has been done in 102 minutes, while on the Great Western Railway there are several instances of trains which are actually timed to run between Swindon and Paddington and Paddington and Bath at over 61 miles per hour.
Old-time Heavy Goods Train Loads.— It is recorded by Mr. Salt that a trial was made in August 1846, on the Manchester and Birmingham line, of a powerful engine made by Messrs. Sharp, Brother and Co. for the company, possessing several improvements, suggested by Mr. John Ramsbottom, the company’s locomotive superintendent. A train of merchandise was drawn by this engine from Manchester to Crewe, which cornprised ninety-seven wagons, the gross weight of which was 586 tons and the net weight of the goods 264 tons.
Again, under the heading “Monster Train” on Saturday, 3rd October 1846 a train of merchandise left Manchester for Crewe composed of 101 wagons. Its gross weight was 600 tons and its length 1,550 feet. The distance, 30 miles, was accomplished in two hours and nine minutes, being at the rate of 14 miles an hour over gradients varying from 1 in 377 to 1 in 880. The engine was made by Sharp and Co. and accompanied by Mr. Beyer, Mr. Rarnsbottom, and Mr. Salt.
It will be observed that the first train mentioned gives an average load of merchandise per wagon of 2.7 tons in the ninety seven wagons used, and it is instructive to look at the modern returns produced in the form presented by thc Ministry of Transport, as here it will be found that the average wagon load in Great Britain for merchandise is 2.92 tons, so that we have not made much progress in the load per wagon. When we find these modern returns showing that the average number of wagons per train is only thirty-five, we see how very misleading a system of average figures rnay become when it is well known that therc are many goods engines in this country hauling loads of 1,000 to 1,200 tons.
Lubrication..— Methods of lubrication have been inirnensely improved, and, with the certainty that all moving parts could be properly lubricated, the possibility of high spceds has increased. I rerneniber in the very early days that Mr. Ramsbottom produced what I believe was the first form of displacement and sight-feed lubricator. As I was employed to assist the draughtsman who was trying the experiment, I have a vivid recollection of the way in which it was done.
To the outside cylinders of one of his “ Lady of the Lake ” class locomotives he fitted two glass lubricators, which were nothing more than two old-fashioned egg-ended soda-water bottles, which were attached to the underside of the cylinders by nieans of brass unions. The amount of oil which these contained on leaving Crewe was recorded, and they were carefully examined on arrival at Euston. This experiment led to the creation of the spherical form of brass lubricator which was put on the side of smoke-boxes of London and North Western engines, but which was first of all attached underneath the steam-chests as illustrated in Zerah Colburn’s book on Loconiotive Engineering.
With lower pressures than we have to-day, lubrication was a less difficult matter than it is at the moment, hence there has been a widespread tendency to use piston-valves instead of any of the flat-faced D valves. I am not aware that anyone has recorded the results of any experiments with piston-valvcs to show the force required to move them, but the experiments which I tried in 1888 on the Great Southern and Western Railway are recorded in the Proceedings of the Institution of Civil Engineers of 18th December 1888.
In these experiments it was found that flat brass valves measuring 164 inches by 10 inches with a steam-chest pressure of 139 lb. gave a resistance to movement at mid stroke of 1,321 lb., giving a co-efficient friction of 0.068. .
William Prosser patented in 1844 a system of angular wheels which was capable of keeping locomotives and rolling stock on the rails without the need for flanges. Used for a time on the Guildford & Woking Railway.
The next meander took Sir John into dangerous territory as he cited Clement E. Stretton's The History of the Preston and Walton Summit Plate-way  .

Volume 111 (1926)

T.A.F. Stone
Electric locomotives: a method of clbssifying, analysing and comparing their characteristics. 1001-16. Discussion: 1017-43.
A vast amount of literature has been written about electric locomotives, their mechanical and electrical features, their performances in service, and their merits and demerits as compared with steam-locomotives. This Paper deals with an aspect of the subject which does not appear to have received attention, and that is a method by which electric locomotives as well as steamlocomotives can be classified into types on a common basis, so that their characteristics can be analysed and compared with each other and their respective merits deduced therefrom. Author with North Western Railway of India.

Volume 112 (1927)

Guy, H.L.
The economic value of increased steam pressure. 99-171. Disc.: 172-213. 38 diagrs.
Mainly in large stationary plant, such as electricity generating stations, and ships. Discussion: A.E. Malpas (166) suggested that there was no need to take up any further time in trying to improve the steam-locomotive as they knew it to-day. It was far better to spend any further capital on electrifying the main lines. He thought Professor Mellanby’s view with regard to the Diesel engine was right, because in course of time cheap supplies of oil fuel would become exhausted and they would be forced to go back to coal.

Kitson Clark, E.
An internal-combustion locomotive. 333-98.

Diamond, E.L.
An investigation into the cylinder losses on a compound locomotive. 465-79. Disc.: 480-517. 10 diagrs., 5 tables.
Several outstanding facts were made clear by this investigation. The first is that as great a loss of efficiency occurs in the cylinders as in the boiler of the locomotive, particularly at high speeds. In express passenger service the locomotive runs normally at speeds in excess of fifty miles an hour. Under these conditions the boiler efficiency may be from 60 to 70% or more, but the relative engine efficiency will not exceed 60% in the best designs of locomotive with the traditional form of valve-gear. It would seem, therefore, that an insufficient proportion of the attention of loconiotive designrrs has been directed to the engine as distinct from the boiler, and it is suggested that great improvements can be mad(. in this direction which would also assist in solving the boiler problem by reducing the steam consumption per drawbar horse-power hour.
It is also an important fact that the cylinder losses increase with the speed, and this helps to explain why goods engines run more efficiently than passenger engines. So great, in fact, is the increase in throttling and back-pressure losses at express speed that it is to be recommended strongly that locomotive tests be not confined, as is so often done, to very heavily graded routes, but that tests be made on level or easily gracled routes with maximum train loads and at high average spccds. Far greater differences are likely to be found between different types of locomotives under these conditions, and it is, perhaps, not without significance that the one British railway company [GWR] wliieh has standardized the long-lap valve for years past is the railway whose main line is level and whose trains are scheduled at the highest average speeds.
Perhaps the most important fact of all those set forth is that in the cylinders of the locomotive under investigation which is known to be of high efficiency, the total losses due to the restricted passages given to the steam at admission and cxhaust increase from 17.6% at 24 miles an hour to no less than 67.6%t at 68 miles an hour, of which probably not more than 15% is necessary for the production of draught; that is to say, an amount of power egual to the work that is actually being exerted on the train is wasted in throttling losses at this speed. In view of this the Author unhesitatingly recommends the universal adoption for compound as well as sirnple-expansion locomotives of the longlap valve by means of which the port opening to steam at admission and exhaust can be materially improved. The only object'ions to its use, namely thc great,er wear on the valve liners and thc extra slip of tho die in the expansion link, seem utterly unimportant in the light of so mormous a loss of power. It is also strongly to be recommended that in cylinder design the provision of large, dirwt ports and a free exhaust passage be the first requirement. It has long been vaguely known that this is desirable, but it has probably not been realized what an enormous effect on thc engine's performance insufficient attention to these points must inevitably hapve. It must be stated, however, that even with these improvements the conventional valve-gear can never approach perfection, and it is suggested that serious experiments be made with the various forms of poppet gear that have been designed for locomotives, for it is evident that a gain of efficiency surpassing that of superheating may be effected if a simple and robust poppet gear can be perfected. It must be admitted 'that the locomotive engine is still a crude affair by comparison with the modern stationary steam-plant. This is not entirely to be attributed to its peculiar limitations, but is Iargely the result of a lack of experiment on the lines indicated in this Paper. There is still, for instance, a wide division of opinion regarding the merits of compound expansion for locomotives. A few carefully conducted indicating experiments, with accurate water measurements and pre-arranged constant conditions, wou!d remove such doubts and condemn some locomotive types that burn fifty per cent more coal than is reasonably necessary.
The Author acknowledged his indebtedness to Sir Henry Fowler, Chief Mechanical Engineer of the London, Midland and Scottish Railway, for permittjing him to make use of the experimental data on which this analysis was based.

Potter, R.B.
Pulverized fuel and its application to boilers. 549-54.
Only makes reference to locomotives in the final santence.

Volume 113 (1927)

Excursions [Birmingham Summer Meeting]. 647-717.
Messrs. Allen Everitt and Sons, Kingston Metal Works, Smethwick. 672-3
From a modest foundation in 1769, Messrs. Everitt had built up a modern factory covering sixteen acres for the production of non-ferrous metals, and especially tubes. Since WW1 tube mills had been rebuilt and had been equipped with the most recent appliances for economic production. They had also rebuilt and refurnished their research department and installed melting and heating furnaces of the latest designs. The firm was the first in this country to employ electrically heated furnaces for the production of tube castings. Within recent years they had made a speciality of cupro-nickel condenser tubes, and these were successful in resisting corrosion and erosion and were installed in several important power stations around the world.
The Metropolitan Carriage, Wagon and Finance Company, Saltley Works, Birmingham. 682-3.
Works established by Joseph Wright, a coach-builder, in 1845, to meet demand for simple wooden four-wheeled carriages and wagons then in use. Since then the works had expanded to meet the growing demands of the railways, and then covered about fifty acres. Due to increasing scarcity of best quality timber, steel and aluminium were being used for body construction, the body-framing being sometimes of wood covered with steel panels, sometimes of metal throughout, but more often a steel framework finished internally with wood. A special feature of the carriages built for the tube railways in this country was that all timber was fireproof, and the cars were usually lined with sound and heat insulation.
To meet world-wide competition, the works had concentrated on speed of production. Two examples were the delivery of 200 Indian four-wheeled steel-covered goods wagons in eight weeks, and 500 forty-ton steel bogie grain-wagons for South Africa in twenty weeks. Such output demanded an extensive plant, and the shops were arranged for the progressive passage of a great variety of vehicles through the works. The drawing office contained a staff of over a hundred draughtsmen. In designing, great attention was being given to the reduction of weight, whilst maintaining adequate strength. Another aid to rapidity of construction was the extensive range of bushed drilling templates and tools provided for each order. This ensured interchangeability of parts, so that a complete vehicle can be quickly assembled from pieces taken at random.
Raw materials entered the works at the outer end, and were distributed by a cross-gantry, steel and iron being dealt with on the left, and timber on the right. The sections and plates were straightened and machined, assembled and riveted in large shops equipped with overhead cranes. Adjoining was the smithy, and the waste heat from the coal-fired furnaces was used to generate steam for the steam-hammers and the power house. In the saw-mill over 30,000 ft3 of timber were handled per month. After machining and sanding, the wood parts were delivered to the finishing and body shops for assembly.
The final, and one of the most important stages of production was painting. Here great skill and the very best materials were required to withstand corrosion and the heat of foreign climates; several coats of paint being applied, and a specially heated and dustfree shop was provided. The majority of coaches manufactured for export had to be completely dismantled and packed, but some were shipped complete. In most cases these coaches fouled the English loading gauge and special tranship bogies had to be constructed with screw-gear, to give lateral movement, and all transport to the port of shipment was done over the week-end. In conjunction with the other works controlled by the Metropolitan Carriage Company, an estimated annual output up to 15,000 wagons and 600 coaches could be achieved.
The Midland Railway-carriage and Wagon Company, Midland Works, Washwood Heath. 684.
This was one of the oldest railway rolling-stock firms in Britain, having been established in 1853. Then works were completed in 1912 and were up-to-date in lay-out and equipment. The establishment on the iron side included wheel forge, general forge, smithy, and press shop, die shop, foundry, machine shop, steel erection shop, and power station ; these together covered an area of nearly nine acres. The buildings on the wood side comprised a timber shed and gantry, saw-mill, wood wagon-building shops, carriage body-building shop, coach finishing shop, paint shop, polishing and trimming shop, and general stores, which occupied an area of about eight acres.
The saw-mill included a sixty spindle drill for drilling all holes in wagon sole-bars simultaneously, and double-ended tenoning machines, one of which was specialIy designed to include trenching in its operations. AlI scrap, sawdust and shavings were collected underground and conveyed to the power house boilers. The latest timber-drying plant was installed. The wagon shop was capable of dealing with 120 standard coal wagons a week, all components being made to jigs and templates. Electrical power was distributed by a three-wire direct-current system at 440 volts. Steam was generated at 175 psi with 150° superheat, and was taken from the power house through a reducing-valve at 100 psi into the forge and smithy. The exhaust from the hammers and drop-stamps was returned to a steam-accumulator and finally passed through mixed pressure turbines to condensers. There were also vertical high-pressure reciprocating engines which could work in series with the turbines, either alone or in parallel with the smithy, or else could exhaust direct to the condensers. These arrangements reduce to a minimum the chance of total failure.
London, Midland and Scottish Railway Company, Chief Mechanical' Engineer's Department's Works, Derby. 699-702.
Works mainly concerned with building and repairing the 3,000 locomotives in service on the Midland Division of the LMS. They occupied eighty acres, of which about twenty were covered by shops, stores and offices. When fully occupied 4,500 men and youths were employed. Some of the shops had been in existence since 1839. A particularly interesting one from this period was No. 1 Round Shed, where light boiler repairs were carried out; this was built in 1839, and was the first engine-shed be constructed with a central turntable and radiating tracks. The works had been expanded, the largest extension taking place in 1874: consequently the lay-out is not ideal. An important feature of the shops was the progress system, whereby the position of various components was shown on conspicuously displayed cards showing daily work progress and indication of when it should be completed.
A central power station provided power and light to the Chief Mechanical Engineer’s, the Carriage and Wagon, and the Signal departments. The installation consists of one 2,000 k.v.a. and two 1,500 k.v.a. generators and turbines and one 600-900 k.v.a. mixed pressure turbine (the latter being driven chiefly by the exhaust steam from the forge and smithy) and two Willans central-valve engines, as a shndby for light loads. Steam is provided by five Stirling water-tube boilers, two working at 210 lb. per sq. inch and three at 170 lb. per sq. inch, superheated to 640°F. and 520°F. respectively. Four of these boilers supply 24,000 and one 16,000 Ib. of steam per hour. The heavier machines in the works are driven by separate niotors, and the lighter ones are run in groups from short lengths of shafting.
The smithy and forge are equipped with steam- and drophammers. The brass foundry has four Morgan furnaces, fired by oil-gas tar, a by-product from the oil-gas works; each of these furnaces has a capacity of 600 Ib. There are also two pit-type crucible furnaces. The total capacity is from 25 to 30 tons per week, a,nd of this output about 76 per cent of the castings are machinemoulded. A chair foundry has two cupolas, used on alternate days, each giving an output of 250 tons per week, and produces about 13,000 chairs per week for the permanent way of the Midland Division. The iron foundry has two cupolas, also used on alternate days, each having a capacity of 150 tons per week. Jolt-ramniers and moulding machines are installed.
The wheel and axle shops do all the rnacliining necessary for wheel-centres, tyres, crankpins, straight axles and both solid and built-up crank-axles. An interesting machine is the wheel-prcss ; its ram can exert a force of 200 tons, and an a~t~ornatriocc order indicates the pressure at any position of the whecl as it is bring forced on to the axlc. The boiler shops are provided with furnaces gas-fired from a gas-producer plant, and two hydraulic presses of 550 and 260 tons capacity for flanging boiler plates. A particularly good example of this work is the throat-plate which connects the Belpaire firebox to the boilcr barrel. The tender tanks are made in this shop, and in their construction angle-iron work has been almost ein5rely superseded by flanging the plates and stays. The splashers for the wheels of goods locomotives are now also pressed out of a flat sheet instead of being built up from plates and angles. Two vertical drilling machines are installcd in a pit for drilling an assembled boiler shell and firebox in any direction. A single vertical roller bending press, with an hydraulically operated pressure-bar is used for hending the outer steel wrapper plates of Belpaire fireboxes ; this is sptAcially adaptable for the sharp bends in the upper corners of the plat(,. There are also hydraulic riveters and large forging presses, the latter bending, setting, and welding foundation rings. The plant in these shops is capable of making seven new boilers and dealing with heavy repairs to sixteen boilers per week. In the boiler mounting shop the position of the mountings is located by teniplates temporarily attached to the boiler.
The machine and fitting shops, built in 1874, are well-lighted buildings and contain a large range of modern machine-tools, a few of the principal being a frame-slotting machine capable of making four cuts simultaneously through a set of twenty engine frames, each one inch in thicknws; a drilling and tapping machine for cylinders ; a niaehine which can bore simultaneously the cylinder and piston-valve chest, the boring-bar for the latter being capable of adjustment to any angle rclative to the cylinder axis ; an a11- electrically-driven planing machine ; heavy milling machines, and a series of automatic and semi-automatic lathes. The lay-out of these tools is arranged with special regard to the sequence of the machining operations. Prom the marking-out tables the work flows along reglilar paths, until it enters the erecting shop. The tool room is a specid fvature of the machine shop. To it is attached a standard room in which are kept all types of gauges, measuring machines, and a shadow projector for screw-threads.
The crecting shop has three bays and can accommodate seventytwo locomotives on six longitudinal pits. Twelve of these pits (at the ends of two of the bays) are reserved for the examination of engines prior to repair ; an additional central road in each bay is used for wheeling the engines and carrying them in and out of the shop. The output from this shop is twenty-two engines each full week, including two new locomotives and twenty heavily repaired or rebuilt ones. In the paint shop the engines are completed ready for the road. There are a large staff of millwrights with their own shop, an electrical shop in which is manufactured and irmintained the electrical plant required in the works and elsewhere, anibulance and mess rooms, a photographic department and well-equipped test rooms and chemical laboratories.
London, Midland and Scottish Railway Company, Carriage and Wagon Works, Derby. 702-3
The works were originally laid out in 1876 and have been added to from time to time. The lifting and stamping shops, which are the most recent, were built in 1910. The general lay-out is as follows: wood-working shops are on the west side of the main sidings, iron-working shops on the east side and painting shops at the south end. The whole of the plant is electrically driven. Hydraulic power is also supplied at 750 and 1,200 psi and compressed air at 100 psi.
Saw-mill:Timber was purchased as trees, square logs and scantlings, and was obtained as far as possible from Empire sources. Some was bought dry, the rest was subsequently dried either naturally in stack, or artificially by the moist air process (Erith's). The stacks for natural drying were arranged on the pigeon-hole principle (gaps between edges of the scantlings, etc. but no gaps between rows). No marking-out was done; the timber was worked to stops and templates. All articles were finished to final size and the tolerance allowed was plus/minus 0.002 inch. The machines were grouped according to operation and not by type as usual in British practice.
Wagon Building Shop.Each man was engaged on a particular part of the work, and each operation was performed at a fixed point, the work being moved to the man. No fitting or finishing was necessary, and all parts were delivered to the point required, and mainly to the height required, to avoid unnecessary lifting. Only one road in the shop was actually used for erection, instead of ten roads under the old methods. Each of the main operations (of which there are ten) takes approximately the same time, and a wagon was turned out every thirty minutes. Simultaneously with the completion of the tenth operation, the wagon was ready for moving away for painting and lettering. Hydraulic power was used for cramping operations, and pneumatic power for boring and nut-tightening.
Carriuge Building Shop.There were nineteen positions for erection, finishing and painting. The end-framing, seat-framing and doors were placed in power cramps, and screws were put in by automatic screw-driving machines before pressure was released. The steel underframe was delivered complete on its own bogies to the building shop. At the first operation the wooden floor was fitted and upon this the ends, quarters, partitions, etc. were erected, including the complete jig-made roof. The time taken for the actual assembly on the carriage underframe was twenty-two minutes.
Carriuge Finishing Shop.dealt with the construction of sliding doors, partition frames, photograph frames, door-lights, etc. These articles were put together in cramps, after which they were taken to the triple-drum sander and a good surface prepared for polishing. They were then taken to the polishing shop.
Carriage Polishing Shop.-The first operation was staining, and the second filling, after which the articles were spray-polished or spray-varnished. The articles which had been spray-varnished are put into a special drying room at a humid temperature of 95° F. The spray-polished work was rubbed down by flatting machines. The completed work from these machines was taken to the benches for the final polish.
Painting Shop No lead was used in painting carriages and wagons. There were for inspection in this shop a kitchen car with steel panelling and Decolite floor, and a third-class corridor brake.
Liffing Shop This shop was built in 1910 on modern lines. There were no pits for examination purposes, as the vehicles were lifted by two electrically driven cranes on to trestles, at a convenient height for working underneath. The bogies were dealt with by 5-ton floor-operated cranes. Whilst the bogies and frames were being cleaned and any necessary replacements of worn parts made, the wheels were dealt with in the turning shop. Seventy-nine carriages and one hundred wagons were lifted each week. In the underframe, bogie, and steel-frame erecting bay, operation timings were adopted in the same way as in the erection of carriages and wagons. The component parts were assembled on jigs and afterwards built as a complete underframe or bogie. Hydraulic and pneumatic riveters were employed, and two machines were utilized for electrically heating the rivets.
Turning Shop.-Axles, tyres and wheel-centres were bought in the rough state and machined and assembled on modern machines. Wheels were pressed on to the axles by hydraulic pressure, fifty to sixty tons being used for wheels without tyres, and sixty to seventy tons for wheels fitted with tyres. Wheels are condemned when the tyres were worn to less than one-inch thickness.

Fowler, Sir Henry
Address by the President. 723-47.
Two themes were intertwined: the significance of George Stephenson and the significance of metallurgy on mechanical engineering. "I have always been impressed by the fact that George Stephenson seemed to be not only conversant with, but an expert on all that was known and of interest concerning mechanical engineering in his day."
At the time when the Rocket was being built, not only was there no large commercial production of metals and alloys of the quality and type which we look upon as commonplace to-day, but the actual production was, to our present-day ideas, infinitesimally small. Of the basic material, cast iron, the whole amount produced in the world in 1850 was only 4½ million tons; in 1926 this had grown to over 77 million tons. The amount of steel did not reach half a million tons per annum until 1870, whilst in 1926 it had reached over 90 million tons.
The Rocket was produced from ordinary cast and wrought iron, and a small amount of brass, Compare this small number of metals with the varied and complex quantities used in the construction of such a simple machine as a locomotive to-day We must, remember that the constituents of the three metals mentioned were not then properly understood nor were they subdivided as they are now.
"In 1848, Dr Pole translated, from the German, Alban's book on a high pressure boiler, which was in fact an interesting water-tube boiler" (running at 1000 psi). Standardizing materials: (steels, brasses, bronzes); steel  manufacture, metallography, fatigue, radiology, education and higher pressure boilers. Several quotes from Ecclesiasticus: "They will maintain the fabric of the world; and the handywork of their work in their prayer." Aspinall gave the Vote of Thanks pp 746-7.

Fry, Lawford H.
Some experimental results from a three-cylinder compound locomotive. 923-54. Disc.: 955-1024. 5 illus., 22 diagrs. 17 tables.
Built at Baldwuin Locomotive Works in 1926: No. 60,000 with water tube firebox and high pressure (350 psi) steam. Thorough series of tests on the Pennsylvania Railway locomotive testing plant at Altoona and trials in road service. On pp.955-61 Fowler gave details of compound locomotive performance on the LMS. Discussion at Meeting in Leeds on 12 January 1928: John H. Barker (985-7) showed in Fig. 28 a section of a three- cylinder locomotive built by Robert Stephenson and Company in Newcastle about the year 1840, the drawing of which he had found in the old records of the company when he was in their service in 1890. There were two outside cylinders connected to two crank- pins on the same centre; between the frames was a third cylinder connected to a crank-axle carrying the two driving wheels and with the crank at 90° to the crank-pins. The inside cylinder had a piston area equal to the combined piston areas of the outside cylinders and had the same stroke. The engine had a single driving wheel placed behind the firebox with its axle beneath the driver's footplate; the inside connecting-rod passed boldly through the firebox and was protected from the fire by means of a sheet-iron tunnel or . inverted trough. Whether this originated the idea of increasing the heating surface of the firebox by similar means he (lid not know, but as recently as 1885 he had seen old boilers removed with fire-grates so divided and a water space between the two halves of the fire. Whether the increased heating surface compensated for the reduced grate area was doubtful. No records had been discovered of this early three-cylinder engine. Its only. advantage could have been the absence of cross strains from unbalanced piston and crank eitorts,but that could hardly have been worth the increased cost. The efforts of the London and North Western three-cylinder locomotives with two outside high-pressure cylinders and one inside low-pressure cylinder were not encouraging, but they had the unique ability of turning one pair of driving wheels in one direction and the other pair in reverse. The method of starting No. 60.000 was not described in the Paper, but it. would be of interest to know if and how high-pressure steam was introduced into the low-pressure cylinders. If a three-cylinder compound locomotive had the cranks set at 1200 the exhaust blast would be erratic. The Author had informed him that the reason for the arrangement adopted in No. 60,000, namely the two low-pressure cranks at 900 and the high-pressure at 1350 to each of the low-pressure cranks, was to obtain a regular beat.
Amongst the voluminous and valuable figures accompanying the Paper the pressure of the steam at release was given as 19 lb. per sq. in. with a steam consumption of 49,000 lb. per hr., this was roughly equivalent to 100 horse-power, and its only use was to provide t.he draught for the fire. It might, however, be true that there was no form of forced draught better than that used ninety- eight years ago at Rainhill. Mr. Goodall had commented adversely on the steam consumption of locomotives as compared with that of a modern power station, but it must always be remembered that a locomotive delivered power exactly where it was required. If standby, distribution, and transformation losses were taken into account the average consumption of coal, per unit of power delivered where needed, was about three times that required to generate electricity under test-bed conditions.
T. Grime (Messrs. Hawthorn, Leslie and Co. 987-) said that the locomotive under consideration was of a type with which, so far as the arrangement of cylinders was concerned, they were familiar in this country. In other respects, however, notably the design of the boiler and the general proportions of the locomotive, it represented a wide divergence from contemporary British practice. It was worthy of note that the Author considered the usual fire-tube barrel of the locomotive boiler to be a feature difficult to improve upon. Such an opinion might appear rather positive, but it would be found a difficult matter to design a water-tube boiler providing sufficient resistance to gas-flow to ensure a reasonably efficient performance with the high rates of. combustion inseparable from locomotive working, whilst the advantage of the normal type of locomotive boiler from the point of view of heat storage to meet rapidly fluctuating demands must not be overlooked. The principal disadvantage of the normal type of barrel with high steam-pressures was on account of its weight, and it was worthy of note that in the present example the thickness of barrel plates ranged from 1 5/16  to l½ inches. To avoid this difficulty the possibility of dividing the boiler into two portions might be worth consideration. With such an arrangement the firebox portion would provide steam for the high-pressure cylinder, whilst the fire-tube portion would form a combined low-pressure generator and intermediate receiver supplying steam to the low-pressure cylinders, as in the Henschel locomotive described by Wagner. The general performance of the boiler differed very little from that of one of similar proportions and normal design, and it was of particular interest to note that in spite of the large surface presented by the water-tube firebox as compared with a firebox of normal design, the actual percentage of the total heat transfer taking place in the firebox was almost exactly what would be expected in the case of a firebox of the usual type.
If they selected from the trials of the L.M.S. "Royal Scat" locomotive described by Sir Henry Fowler (see page 958), the one showing the best overall efficiency (test conducted between Crewe and Euston on 28 November 1927), they found that the boiler evaporated 8.4 lb. of water into superheated steam at 250 lb. per sq. in. pressure per lb. of coal having a calorific value of 14,050 B.Th.U,'s per lb. The superheat temperature was not given, but if they assumed that it was between 200° F. and 300° F. (606° and 706° F. steam temperature) and that the feed temperature was 50° F. they obtained a boiler efficiency of between 78 and 81 per cent. The firing rate was given as 73.9 lb. per sq. ft. of grate area per hour, and if they referred to Fig. 5 in the Paper they found that the corresponding efficiency for the boiler of locomotive No. 60,000 was 63.5 per cent. In his opinion this disparity did not necessarily mean that the design of the American boiler was inferior, but rather demonstrated the superior physical qualities of the best British coal as a locomotive fuel.
The best results given concerning engine performance (test 7,913 ; 120-70/40) showed a cylinder efficiency of 75 per cent compared with the Rankine cycle, and represented a performance considerably in advance of any results which had been published in this country. It was rather unfortunate that no indicator diagrams had been given for the" Royal Scat" locomotive. The approximate cylinder performance could, however, be closely ~stimated from the particulars given. Referring again to the tests conducted between Crewe and Euston on 28th November 1927, the load behind the tender was 551.6 tons, and the weight of engine and tender 120.6 tons. The total work done during the trip was given as 2,697'5 drawbar horse- power hours. The mean speed was 51 m.p.h., and as the distance was 158 miles the mean drawbar horse-power was 870. Assuming mainly level track the engine resistance according to Continental formuloo would be 2,400 lb. including head air-resistance, a figure which checked quite well with several English results. The corresponding horse-power to move the locomotive at 51 m.p.h. was 326, which gave a total of 1,196 i.h.p. The water evaporated was 38 gallons per mile, or at 51 m.p.h. 19,380 lb. per hour. Reference to

Johansen, F.C.
The screw-propeller. 1073-84. 5 diagrams.
Includes both propellers for ships and for aircraft.

Volume 114 (1928)

H.P.M.  Beames
The reorganization of Crewe Works. 245-62. Discussion: 245-88. 5 illus., 5 diagrs., 2 plans.
F.A. Lemon (268-9) said that the Author in presenting the Paper had been kind enough to thank him and his assistants for the work they had performed. He desired to carry that a step further. Thanks were due not only to the Works Manager, his assistants and his foremen, but also to the workmen for the goodwill they had shown. All concerned had been particularly fortunate during the reorganization in receiving co-operation which enabled them to carry out the work within a fairly short period and with some success. One or two questions had been raised with regard to the effect on the output. The output had been speeded up so that the number of engines awaiting heavy repairs had been reduced from about 13.2 per cent to 7.03 per cent. Thus, with the stock of 3,700 engines which had to be maintained at Crewe, very considerably increased efficiency had been effected. He desired to emphasize that when they started the processing system it was considered advisable that the men should be taken into their confidence. The chairman and secretary of the Workshop Committee and three men whom it was intended to make the leading hands on the first “Belt” were called together, with their foreman. They were then shown exactly what was required. The men were quite willing to carry out the suggestions, but they were naturally anxious to know what their earnings were likely to be as they would all relinquish piece-work for work for which there were no piece-work prices at all. They were informed that they would receive 33.3 per cent extra money provided they delivered the output required ; but that if they continued to deliver the full output it would enable various devices to be introduced since the same job would be done at the same place each time, and a reduction could be made in the staff, with a corresponding increased percentage allowance. The effect of the reorganization was that the first engine was repaired with a reduction of 13.7 per cent in man-hours, and was completed five minutes before time. The balance or allowance to the men was then raised to 40 per cent. Very shortly afterwards it was possible to introduce the devices to which he had referred, although he had not time to describe them in detail. The staff was then reduced, thus reducing the man-hours, and the men still engaged on the work were given a portion of the advantage, the allowance being raised to 45 per cent. Subsequently other devices were introduced and it was possible to give the men 50 per cent premium, the amount which they were at present receiving.
He also wished to refer to the moral effect that had been introduced. No man in the workshops would for a moment allow it to be said of him that he was holding up the “Belt,” and not only was this so in the erecting shop itself

Maunsell, R.E.L.
The trend of modern steam-locomotive design. 465-77.
Lecture delivered before the graduates' section in London on 26th March 1928, and repeated in Birmingham on 13th April 1928.
The railway engineer must always have in mind the fact that it is the total operation costs which really concerns the undertaking he serves and not merely the cost of operation of the locomotive itself. For instance, as main line locomotives are superseded by heavier and more powerful machines to meet traffic requirements, the older engines are usually relegated to work on branch lines. New locomotives specially designed for branch-line service would in all probability be more economical from purely operating and mechanical points of view, but the value of such economies would in most cases disappear when considered in conjunction with the capital cost of the new locomotives, and the loss of capital represented by those they replaced.

Stanier, W.A.
A pageant of railroad engineering. 495-8.
Address delivered at Western Branch in Bristol on 8th December 1927.

Volume 115 (1928)

Herbert, T.M.
Locomotive firebox conditions: gas compositions and temperatures close to copper plates. 985-1006
Metallurgist who became in charge of research on LMS. Tests on firebox gases: carbon dioxide, carbon monoxide and oxygen levels and temperatures at stay heads. Collaborative research with Railway Clearing House and British Non-Ferrous Metals Research Association. In addition to tests on 4F 0-6-0 No. 3855 between Derby and Killamarsh and on 4P compound No. 1031 tests were made on the following engines : (1) Southern Railway, King Arthur class engine Nos. 452 at Nine Elms and No. 763 at Battersea; (2) London and North Eastern Railway, Pacific " type engines Nos. 4480 based at Doncaster working to King's Cross and No. 2580 working over the Waverley route from Edinburggh and (3) London and North Eastern Railway, ROD type engines working from Mexborough with its notorious water and in Scotland.  The test on No. 452 at Nine Elms was the first of the new series, and was primarily carried out to discover the effect of washing out. One test was made on the first run after washing out the boiler, and another on the last run prior to its becoming due for the next washing out. Influence of the type of firebox on the surface temperature.- There was some evidence to show that the distribution of surface temperature is partially dependent upon the actual shape of the firebox. Narrow fireboxes, especially Belpaire type boxes in which the bend is sharp, usually show greater extremes of temperature than are met with in the case of wide boxes, especially when dirty. Several reasons for this may be suggested. In the first place, the resistance of the water film in the water legs may be increased owing to the difficulty experienced by the steam bubbles in rising up the somewhat tortuous path presented to them by the enlargement of the box at the ogee bend. Second, this enlargement increases the firebox volume above the arch, and the hottest gases are drawn away from the rapidly diverging sides into the tubes, so that they do not impinge on the stay heads in this region, while, further, these regions are partially withdrawn from direct radiation from the fire. Possibly also the brick arch tends to localize the greatest temperature to a larger extent in a narrow box, where it is usually longer.

Volume 116 (1929)

F.C. Johansen
Research in mechanical engineering by small scale apparatus.  151-216. Discussion: 216-72.
The Paper is interesting, not only for shiowing Johansen's early work, but also for the light thrown on earlier model work; notably by Froude and by Robert Stephenson's associates on models prepared for testing the tubes used in the Britannia Bridge. C.F. Dendy Marshall (258) wrote that the investigation of problems by means of models had been used to an enormous extent in connexion with aeronautics, and the value of this fascinating method of attack had been demonstrated over and over again. A considerable amount of valuable work had also been done on ship models, where again its usefulness had been well established. But in the whole of the rest of engineering there had only been a few isolated instances of its employment. The Author had made it clear in his Paper that the science of small-scale research was now on a firm basis, and that hundreds of experiments, dealing with as many widely different problems, could be set on foot without any hesitation as to method, and with a certain promise of useful results. In his book on “ Train Resistance,” and elsewhere, he had often urged the desirability of a thorough investigation of the subject of the air resistance of trains by this method. Mr. Johansen had taken up this suggestion, and, what was more, had put it in the forefront of his Paper. He had shown beyond the possibility of contradiction that it was well worth acting upon, also indicating in a most able manner the lines on which such research should be conducted. Something more, however, was required, and that was to arouse interest on the part of railway engineers in the subject, and to bring them to realize its importance. More than eighty years ago Sir Henry Besserner tried to do so, without success. The same result had so far attended his own efforts, in the course of which he had offered them economy of coal through reduction of resistance, improved natural draught in the smokebox, and a clear view through the cab windows ; but they seemed to care for none of these things. There was once a notable exception. He had great hopes of his friend the late Mr. Bowen Cooke, because he promised the Machinery Committee of the Ministry of Inventions to try a design of chimney which he had submitted to them, and which they recommended for trial even during the War ; and he succeeded in extracting a promise from him that he would go thoroughly into the whole subject of railway aerodynamics with him after the War was over ; unfortunately he was unable to keep the first promise owing to pressure of work, and unhappily he did not live to fulfil the second. But the question had now been put on quite a different footing by Mr. Johansen's treatment of it, and he hoped it would not be long before one of the wind-tunnels at the Natioual Physical Laboratory found itself permanently taken up with railway work, and that perhaps a suggestion he had ventured to make in a recent article in The Engineer, that each of the great companies should haw its,own wind-tunnel, might riot be very far from becoming fact.

Volume 117 (1929)

Meeting in Manchester, June 1929: excursions. 685 et seq
Messrs. Beyer, Peacock and Company, Gorton. 694-
Works celebrated three-quarters of a century of locomotive building for all parts of the world, having been founded in 1854 by Mr. Charles F. Beyer and Mr. Richard Peacock. They covered a total area of twenty-three acres, of which between seventeen and eighteen acres are roofed shops, and, when working up to full capacity, find employment for 3,000 men.
General Offices formed a large two-story building 245 feet in length and 45 feet in width, the ground floor being devoted to the comniercial departments and the upper floor to the designing and drawing offices. A new building was equipped in about 1925 to house the cost accounting and statistical services and was provided with modern electrical tabulating and other machinery.
Foundries. The iron and steel foundries were located in one building, over 400 feet long and 120 feet wide when an extension then under construction was completed. The equipment of the steel foundry included two 10-ton acid Siemens-Martin furnaces, and the extension included an electric furnace melting plant. The annealing furnaces were of a special pit type with removable sectional roofs, and were gas-fired from the plant used in connexion with the melting furnaces. There was also a brass foundry capable of producing individual castings as large as the heaviest axle-boxes.
Forge. This shop was equipped with five steam-hammers, including one of 74 tons, capable of dealing with the largest sizes of steel blooms required in locomotive work. Two hammers are served by gas-fired furnaces and the remaining three by oil-fired furnaces. The department also included annealing and case-hardening furnaces.
Smithy comprised four bays each 120 feet long by.40 feet wide. Its equipment included steam and electro-pneumatic hammers, hot and cold saws, nut and bolt forging machines and rivet-making plant with oil-fired furnaces and the usual smiths’ hearths.
Pattern and Joiners Depurtment. The modern locomotive, especially the articulated type, entailed a considerable amount of patteh-making and the pattern department was consequently a commodious building. An adjunct of the main building provided accommodation for a large number of joiners, wliilst other large buildings were used for the storage of patterns of which there were many thousands.
Boiler and Tender Departments. An outstanding feature of the firm’s policy of modernization was the new boiler department, which began operation in 1925: it measured 600 feet long by 175 feet wide, and consisted of three longitudinal bays and a riveting bay. The main or boiler building and mounting bay was fitted with two crane gantries of 62 feet and 59 feet span respectively, one above the other. The upper accommodated travelling cranes of 50 tons capacity, and the lower one carried cranes of 10 and 5 tons capacity. The middle bay had a single gantry of 50 feet span for cranes of 20 and 10 tons capacity. The third bay also had a single gantry, but of 45 feet span and carryied cranes of 10 and 5 tons capacity. These three gantries led into a high transverse end bay equipped with cranes, having remote control, of sufficient range of lift for dealing with the longest boiler shells. In this transverse bay were situated the deep-leg riveting machines. Adjacent to this bay, but outside the shop and alongside the railway, was a large covered stores for the unloading and storing of plates. The whole of the machinery and plant was planned and laid out so that materials as received progressed in proper sequence, involving a minimum of transport and handling, until developed into a complete boiler. tender or tank ready for testing. The hydraulic and steam tests of boilers were carried out in a special section of the shop before being passed to the erecting department.
Framing Department. Large machine shop devoted to processes involving frames: department had a span of 75 feet and was 305 feet long. It had a single gantry carrying crane of 6 and 20 tons capacity, the former had remote control. This department had machines for handling not only plate frames, but also bar frames, usually associated with American locomotives and used in a considerable number of Garratt locomotives recently designed and constructed at Gorton Foundry. Most of this machinery was naturally of a heavy character, and included slotting, drilling machines, etc , arranged so that the frames progressed until reaching the fitting section, where the axle-box guides and other details were fitted before passing to the erecting department.
Machine Departments. The arrangement and equipment of these presented many features of interest, and included sveral modern machines introduced within previous six years.
Cylinder Department.was160 feet long by 42 feet wide, of modern construction with ample top light and a gantry throughout its length with one 10-ton crane. The equipment included two modern planing machines, the larger of which had a stroke of 12 feet with a distance of 10 ft. 9 in. between housings. Modern boring niachines and drilling machines also featured.
Wheel and Axle Department occupied a building 250 feet by 42 feet, having a gantry throughout its length and generally of similar construction to the cylinder department. It was equipped with modern machinery for dealing with axles and wheels, including the latest construction for ‘topping” wheel tyres. A wheel press of 450 tons capacity had recently been installed.
Erecting Department. All parts were ultimately sent for assembly to this shop which was arranged so that the locomotive frames and stays are built on either side of a central track. The frames, after the cylinders, boiler, and other parts have been fitted, were lifted by overhead cranes and lowered on to the wheels standing on the central track, which had a pit for its whole length. The fittings were then mounted into place, the engine completed and passed straight out into a steaming shed and finally to the trial track for inspection, under actual conditions of working.
Coppersmiths. shop was adjacent to the erecting department and in it the many copper and steel pipes required were prepared before assembly on the locomotive. In addition the thin sheeting which formed the clothing on the outside of the boiler was dealt with in this department.
Paint and Packing Departnient. The paint shop was a lofty building 220 feet long by 55 feet wide and had three inspection pits running its entire length. The central track was laid with multiple gauge rails and the crane equipment consisted of two 50-ton cranes capable of dealing with the largest, locomotives. The packing department was adjacent and had every facility for packing the largest parts of locomotives for transport overseas.
Testing Department and central chuck stores were contained in a building 220 feet long. Here jigs, chucks, and gauges for every description of machine work were arranged on a thorough system of classification. The testing department contained a machine room equipped with a 50-ton Buckton tensile-testing machine and machines for testing the hardness and transverse strength of materials. There was also a well-equipped chemical laboratory where analyses were made of all classes of fuel, pig iron, steel blooms and bars and other stores in addition to the products of the forge and foundries. Research work was also conducted here to determine the correct treatment in the manufacture of iron, steel and other materials of construction.
Electric Plant. Gorton Foundry was a pioneer in the use of electric driving, as in 1897 it was fully equipped with its own electric generating plant. In 1906, realizing the advantages to be derived by using power from the Corporation, the works power station was changed completely and current was taken from Manchester Corporation at 6,500 volts. A large portion is transformed to a.c.. at 220 volts whilst the remainder is converted to d.c. for cranes and lighting purposes. The lighter types of machines were grouped and driven from line-shafting whilst individual driving was adopted as a general practice for the heavier machines.
Internal Transport. An example of the progressive policy of the firm was exemplified in the method of internal transport, an item of great importance in facilitating production where great numbers of locomotive details of a heavy nature had to be transferred from one department to another, The works were equipped with several Millars truck-tractors, Lister auto-trucks and a Ransome and Rapier mobile petrol-electric crane for handling the wide variety of component parts. These vehicles worked to a time-table and travelled on concrete roads throughout the works. In addition to these means there was a 5-ton steam travelling crane and two shunting engines, one of which is equipped with a crane.

Messrs. Gresham and Craven, Salford. 710.
The firm was founded over sixty years ago, and after a partnership of twenty years was formed into a private limited liability company. The late James Gresham was largely responsible for the successful development of the steam injector, the inventor of which was Giffard, and showed considerable ingenuity in the various inventions and improvements in that apparatus, which resulted in the automatic restarting injector to pass boiler feed-water at temperatures up tto 140"F. Gresham also interested himself in the automatic vacuum brake, in connexion with the details of which many patents were obtained. The firm has specialized in the production and development of fittings for locomotives, and its injectors, "Dreadnought" ejectors, steam-brake valves and steam-sanding valves are used almost exclusively by the leading railway companies all over the world. The works occupy about 120,000. ft2. of floor space and comprised a brass foundry, smithy, machine and fitting shops, packing shop and testing rooms for injectors and cylinders. There were about 460 men employed and the normal output was 40 tons of finished brass mountings and 2,000 vacuum brake cylinders per month. In the drawing office were kept complete sectional models of the firm's specialities which, with the model brake stand consisting of a train of 50 cylinders and 1,700 feet of piping, ejectors, van valves, etc., form a ready means not only of obtaining accurate data with regard to the performance of the firm's products, but for educating drivers and firemen in the proper use and working of the apparatus they handled. These facilities were greatly appreciated, not only by those conveniently situated, but by Mutual Improvement Societies throughout the country, and hy railwaymen home on leave.

London Midland and Scottish Railway Company. Carriage and Wagon Works, Newton Heath. 713-14.
Works opened in 1877 to manufacture carriages and wagons for the Lancashire and Yorkshire Railway Company, additions being made to the original building in 1896 when the paint shop and mess-rooms were erected, and in 1914, when the shop later used for carriage repairs was opened as a wagon rcpairing shop. The area of the works was forty-five acres with a total shop area of fourteen acres, the length of sidings being over thirteen miles.
Carriage Repair Shop This shop was built in 1914 (as a wagon repair shop), covered an area of 126,808 ft2. and was heated and ventilated on the Sturtevant “Plenum” system. The dimensions were 489 feet long by 266 feet wide and it is equipped with one 20-ton and four 10-ton cranes. Carriages were brought into the shop by a 40-ton traverser and the repairs were performed under a progressive system. After the trimmings had been removed, the carriages were lifted from their bogies in the lifting bays on to movable trestles where both carriage and bogie progress down their respective roads simultaneously, propelled at a constant speed by mechanical power. The repairs necessary to the underframe and bogie were carried out at their various positions. After leaving the lifting bays the carriage was taken through the body repair and finishing stages, so that by the time the vehicle was ready to leave the shop the trimmings and inside fitments had been replaced, and the vehicle is ready for the paint shop. The shop is provided with wheel lathes, smithy and a gas and pipe department.
Forge and Smithy.The principal apparatus in these shops were 2-ton and 1-ton steam-hammers, 15-cwt. and 30-cwt. drop stamps, and a large Bulldozer machine and a number of small steam-hammers. Steam was supplied from the main boiler plant.
Saw-Mill. -Timber entered as rough scantling at one end of the building and emerged at the other in a finished state ready for the building shops. The mill was laid out in two sections, one for dealing with carriage pillars, and the other for dealing with wagon scantlings, coach bottom sides and cant rails. The machines were arranged in sequence of operations, and all machining was done to limit-gauges, no hand labour being necessary on the completion of the operations. The machines in this shop were of the latest type, and included a six-cutter planer, large band saw, and double-ended tenoning machine.
Body Shop Progressive system working was employed in this shop. The doors, ends and quarters were built in jigs, compressed air being used for driving home the tenons, and pneumatic screw driving machines for fixing the screws. The floor of the coach was built on the underframe, and afterwards the whole of the sections were assembled thereon. On the completion of this stage the vehicle moved forward stage by stagc at stated intervals until completion; the first coat of paint was applied before the vehicle went into the paint shop. A portion of the body shop was partitioned off for the coach finishers, the polishing room being adjacent. The various fluids were applied where possible by spraying.
Wagon Shop Three shops were provided for building and repairing wagons with progresiive system working. The timbers were supplied to size and no hand work except on assembling was necessary. All materials were delivered at the correct height as the vehicle progressed towards completion.
Machine Shop. This shop was provided with tools for machining members for steel underframes, and the metal details used in the building and repairing of carriages and wagons. Internal transportation used petrol and electric tractors and trailers. For power and lighting, current was taken from the Manchester Corporation, and the power house was equipped with two 500 kw. rotary converters, working at 250 volts d.c. and two 250 kw. ac . transformers for the sawmill machinery working at 416 volts, the lighting being on a separate circuit at 200 volts d.c.

London and North Eastern Railway Company, Locomotive Works, Gorton. 714-15.
The works originated in 1849, when the locornotivc, carriage and wagon workshops of the Manchester, Sheffield and Lincoln Railway Company were transferred from Newton, Cheshire. Later the works at Gorton became thc headquarters for the construction and repair of locomotives, carriages and wagons, and for the manufacture of a portion of the permanent way requirements for the Engineer of the Great Central Railway Company. Owing to the increased stock on that railway the space available at Gorton was found insufficient, and in 1907 the carriage and wagon work was transferred to new works at Dukinfield. The whole of tho Gorton works was then made available for the construction and repair of locomotives, cxcept that portion utilized for the manufacture of permanent way apparatus. The area covered by the works and running sheds was approximately forty-six acres, and the site was bounded on the north by Whitworth Street (which runs parallel with Ashton Old Road), on the south by the LNER main lines from Manchester (London Road) to Sheffield and London, and on the east by Cornwall Street (off Ashton Old Road), from which street the main offices and works were reached.

Messrs. Nasmyth, Wilson and Company, Patricroft. 729.
The firm was founded in 1836 by James Nasmyth, whose name will always he associated with his invention of the steam-hammer and whose life history is perpetuated by the writings of Samuel Smiles. The works, situated on the LMS Railway about six miles from Manchester, occupy the historic corner where the original railway between Liverpool and Manchester crossed the first canal built in this country by the Duke of Bridgewater. Originally the works manufactured locomotives, steam-engines and machine-tools of all descriptions. However, on patents being taken out for the steam-hammer, the activities of the firm were directed solely to the production of this tool, for which there was a large demand both at home and abroad. After the patent rights of the steam-hammer lapsed, the works again took up the manufacture of locomotives, etc. The customers of the firm included the chief railways of the world. In addition to the usual machine and erecting shops equipped with a number of modern machine-tools, and arranged according to modern ideas of organization, the works contained its own forge and iron foundry. About 700 workmen were normally employed throughout the different departments. With the consulting engineers the firm had been instrumental in carrying out a number of new standard designs of locomotives of metre gauge for the Indian State Railways, and had developed several interesting types of locomotives of various gauges for 'work in the Crown Colonies.

The Superheater Company, Trafford Park. 737
The works are devoted entirely to the manufacture of superheater apparatus of the “ M.L.S.” (marine, locomotive and stationary) type, and contain specially designed machinery for dealing with the various operations in the manufacture of elements. As built in 1914, there were only two bays, but the shops then comprisd five large bays forming one block covering over 50,000 ft2. Each bay was served by fast overhead cranes. Of particular interest was the manufacture of the return-bend which was carried out by the “ M.L.S.” machine forging process without welding. There are three complete plants for this process capable of dealing with tubes up to 3 inches diameter. The tubes were heated in oil-fired furnaces preparatory to the forging operation. The plant comprised special apparatus for bending, offsetting, testing, etc., and since its installation upwards of one-and-a-quarter million ends had been prcduced.
One bay was used as a machine shop where superheater headers were machined, and much of the plant had been specially adapted for the work. Extensive use wais made of compressed air at 100 psi to operate machines. Cast iron was the material employed for locomotive headers, whilst the marine and stationary headers were made of steel. For the tests of superheater elements and headers prior to dispatch, hydraulic pressure up to 2,500 psi was available. The output of headers exceeded 1,250 per annum, whilst the annual output of superheater elements exceeded 68,000, some weighing as much as 7 cwt. and containing up to 230 feet of tube each. 300 workmen were employed.

W.A. Stanier
The heat treatment of locomotive parts. 1069-73. illus., 3 diagrams.
At Swindon it was the practice to treat all steel stampings and forgings so that the structure of each part was in the best condition to resist the strains and stresses to which it would be subject in service. The heat treatment took place in horizontal gas-fired furnaces with adjacent quenching tanks..

W. Arnold  Johnson
Alloy steels for locomotive construction. 1087-97.
Awarded a prize of £5 for this Paper, which was read before the Graduates' Section, North Western Branch, in Manchester on 11th October 1928. Alloy steels considered included those with vanadium; chromium-vanadium; Vibrac steel manufactured by Armstrong Whiworth used for the coupling- and connecting-rods of the Royal Scot class of locomotives which is a nickel-chrome-molybdenum steel. The composition was: carbon, 0.3%; silicon, 0.15%; manganese, 0.6%; phosphorus, 0.03%; sulphur 0.04%; nickel 2.5%; chromium, 0.6%; and molybdenum,0.6%. It was claimed that the molybdenum content prevents temper brittleness. The high-tensile steel used on the LNER Pacific locomotives has the following composition: carbon, 0.33%; silicon, 0.21%; manganese, 0.60%; sulphur, 0.032%; phosphorus, 0.039%; nickel, 3.42%; and chromium, 0.60%. It has a tensile strength of 58 tons: this waas employed high-tensile alloy steel connecting- and coupling-rods. This contributed to reducing hammer-blow..


RETURN TO    Home Page    Top of this Page


Registered Charity No 290944 Company Limited by Guarantee No 1862659